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Part I. Introduction

Part I

Introduction

1 Preliminary

The term "RG" (or "RNG") has now become familiar to the turbulence modeling

and computational fluid dynamics (CFD) community. However, understanding just

what RG is actually about is oftcn viewed as an obscure mathematical problem.

Accordingly, wc fccl that there is a need for an appropriate article for this diverse

community. The present review article, which surveys many aspects of applications

of RG to turbulcnce, is intended to fill this gap.

Turbulence in fluids has prcscntcd a notoriously difficult problem for more than a

century. As discussed in standard text books on fluid motion, the major difficulty is

the simultaneous existence of many different space and time scales at high Reynolds

number. All these scales are of equal importance, hence the theoretical difficulty.

Now, RG was a tool originally developed for dealing with such problems. Indeed,

the work of Wilson in developing the RG method for critical phenomena led to his

being awarded the Nobel prize in Physics in 1982. In The Nobel Prize Winners:

Physics (Magill 1989), wc read:

"Wilson clarificd a natural phenomenon that has puzzled scientists throughout the

centuries: the behavior of substances at critical points, or phase transitions. With his

renormalization group theory, Wilson divided this seemingly insoluble problem into

a number of small ones."

1.1 General remarks

As we have said, at high Reynolds numbers (R_), a wide range of length and time

scales in turbulent flows become excited. Direct numerical simulations (DNS) which

are three-dimensional, time-dependent numerical solutions in which all significant

scales of motion are computed without any modeling are currently restricted to low

turbulence Reynolds numbers and simple geometries (Reynolds 1990). Some recent

DNS of homogeneous and isotropic turbulence at 5123 resolutions arc Chcn et al.

(1993), Wang et al. (1996), and Yeung and Zhou (1997).

Although DNS can be extremely useful in many areas related to the study of

turbulence physics and the assessment of theories (ibid), virtually all scientific and

enginecring calculations of nontrivial turbulent flows, at high R_, arc based on some



type of modeling (Speziale 1991). Most modeling efforts have been focused on subgrid

scale models for large-eddy simulations and Reynolds stress models the two forms

of modeling that will be discussed in this article.

Large-eddy simulations (LES) arc a logical 'modeling extension' of DNS. They
arc based on the observation that the small scales are more universal in character

than the large, cnergy containing scales of motion. In LES, the three-dimensional

timc-dcpcndcnt motion of these large scales are computed directly while the effects of

the small scales on the large scales are modeled. This procedure leads to the so called

'subgrid scale modeling' problem; see Rogallo and Moin (1984), (Reynolds 1990),

Lesicur and Mctail (1996), and Moin (1997). The traditional concept of eddy viscosity

(Smagorinsky, 1963) is that the subgrid turbulence simply enhances the viscous term

in the momentum equation, and that the value of the enhanced eddy viscosity can

be determined by equating the resulting increase in the energy dissipation rate to the

rate at which energy is transferred from resolved to subgrid scales. LES is useful in

the study of turbulence physics at high Reynolds numbers that are unattainable by
DNS.

LES is also intended to be useful in the development of turbulence models for

the prediction of the complex flows of technical interest where simpler modeling ap-

proaches fail (Reynolds 1990). However, all applications of LES have been in simple

geometries where Van Driest damping could be used an empirical approach that

generally does not work well when there is flow separation (Speziale 1991).

Wc note that LES and DNS arc recent dcvelopments, being direct products of

the rapid increase in computer capabilities. The Reynolds stress modeling concept,

however, was introduced by Osborne Reynolds as long ago as 1895. Reynolds stress

models remain the most important tool for the highly repetitive engineering calcula-

tions associated with design (Reynolds 1990). The goal of Reynolds stress modeling

is to provide reliable information about first and second one-point moments (e.g., the

mean velocity, mean pressure, and turbulence intensity), which is usually all that is

nccdcd for design purposes (Spezialc 1991). In principle, this approach attempts to

model all of the fluctuating scales.

Recently, the methodology of RG has attracted considerable attention as a sys-

tematic approach to subgrid scale modeling in LES and Reynolds stress modeling. In

principle, the RG removal of only thc smallest scales generates a subgrid scale model

while Reynolds stress models are obtained in thc limit when all fluctuating scales are

removed. This point of view is due to Yakhot and Orszag (1986).

1.2 Overview

Because we are addressing such a diverse community, some innovation in the structure

of thc review is indicated. Part II is intended for those readers who wish to obtain

a basic knowledge of "RG" and what arc the main results from this approach to

studying turbulence; and in that sense it is complete within itself.



Part III is for those readers who would like to go more deeply into RG theory.

Hcrc we present the detailed mathematical procedures of two RG approaches. In

particular, we clarify their major approximations for the benefit of the reader who is

willing to pursue this line of research. In this part, we have included several related

pieces of work and have also attempted to compile a comprehensive reference list.

Some turbulence modelers or CFD workers may wish to skip Part III and proceed

directly to Part IV. Here we prescnt recent efforts to develop turbulent Reynolds
stress models based on RG.

3



Part II

General description of RG

2 What Is Renormalization Group?

In this section we shall explain something of thc origins and meaning of RG. In the

process wc shall define terms and introduce concepts which will be needed when wc

consider the question of how RG can be applied to fluid turbulence.

Wc should begin by noting the difference between the concept of rcnormalization

and rcnormalization group. The rcnormalization procedure was introduced originally

ms a method of removing divergences in quantum field theory. The rcnormaliza-

tion group theory, on the other hand, was used for improving perturbation theory

(Gell-Mann and Low, 1953) by exploiting the non-uniqueness in the rcnormalization

procedure (Stucchclbcrg and Petermann, 1953). We can illustrate this idea by con-

sidering a problem which may be discussed entirely in terms of classical physics. This

is the electron gas, which consists of a gas of electrons in a uniform background of

positive charge, so that thc system is, overall, electrically neutral. Such a gas can bc

a model for the conduction electrons in a metal, for a plasma, or for an electrolyte.

This allows us to introduce the general idea of renormalization, and is the subject of

Section 2.1. In order to introduce the more specific topic of renormalization group,

we consider as an example the phase transition from para- to ferromagnetism. This is

dealt with in Section 2.2. We will review the applications of RG to critical phenomena
in Sections 2.3.

2.1 Renormalization

It is a cardinal assumption of physics that the macroscopic properties of a material,

such as its diclcctric constant or clastic modulus, will not in gcncral depend on the

sizc of the sample of material under consideration. So, for a microscopic theory, this

implies that we must be able to take limits, corresponding to the distance between

constituent microscopic particles shrinking to zero, or to the overall size of the system

going to infinity, without upsetting our theory. However, if we take our cxample of

an electron gas, it is easily sccn that problems may arise in both these limits.

Let us suppose, for instance, that we wished to work out the total electrostatic

potential energy of all the clectrons in the system and that wc did that naively by

adding up the contributions from individual electrons, each electron contributing the

usual Coulomb 'l/r'. It is obvious that a continuum limit would require r _ 0, with

cach potential diverging in that limit. Less obviously, the limit of infinite system size

also leads to a divergence. Suppose wc take the test charge to bc at the origin and

assume that the surrounding charges have a uniform density p, say. Then, as the



numberof electronsin a sphericalshellbetweenr and r + dr goes as pr2dr, it is easily

seen that this overpowers the Coulomb potential to give a total potential which varies

as 2_rpeR 2, where e is the electronic charge and R is the system size.

The first of these divergences is usually referred to as being 'ultra-violet', because

short distances correspond to high spatial frequencies. Similarly, the long-range di-

vergence in the second case, is referred to as being an 'infra-red divergence'. From our

point of view, the second case is the more interesting. In a charge neutral plasma, the

energy at a point does not diverge with system size because a cloud of ions around

each individual electron acts to screen the long-range Coulomb potential and turns

it into an exponentially decaying potential (for stationary particles). Theoretically,

this effect shows up when we take the interactions between individual electrons into

account. In perturbation theory it would correspond to summing a certain class of

terms to all orders. In fact, the potential at lowest nontrivial order, the potential

becomes e exp[--r/ID]/r, where lD is the Debyc length and depends on the density of

electrons.

This is known as a screened potential. But, an alternative interpretation is to say

that we replace the electron charge e by the renormalized electron charge e exp[--r/1D].

This replacement of a 'bare' particle by a 'dressed' particle, in order to take account

of the effect of interactions, is an important technique in many-body physics and

nowadays is widely referred to as renormalization. It should be noted that a charac-

teristic feature of the process is that the renormalized properties (as in our example)

are scale-dependent.

This discussion serves to introduce the idea of renormalization. Our next step is

to consider what is meant by renormalization group, and it turns out that this is just

one way of achieving rcnormalization.

2.2 Renormalization group

RG was based on the obvious equivalence between taking the continuum limit and

making a scaling transformation of the basic variables such as position or momentum.

However, this theory was regarded as rather opaque in terms of its underlying physics,

and from our point of view, it is better to consider its more modern incarnation in the

theory of critical phenomena, in which it is sccn as a way of dealing with problems

involving a large range of length or time scales. Its possible relevance to turbulence

might now begin to emerge; but wc shall first consider another simple physical system:

the lattice-spin model of a fcrromagnet.

Magnetism arises because spins at different lattice sites tend to become aligned.

This tendency is opposed by thermal effects, which promote random orientation of

the spins. At any fixed temperature, alignments occur on length scales ranging from

the lattice spacing L0 up to some correlation length _. Take a temperature To which
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is sufficiently high that _(T0) is of order L0. It is evident that _ will increase as T

decreases below To. In fact, _ actually becomes infinite as T approaches the Curie

temperature, which defines the critical point for this problem. At this critical point,

fluctuations on all scales from L0 up to the size of the material specimen can occur,

and therefore a net overall magnetization can appear.

The theoretical problem is to calculate the partition function and thence the

thermodynamic properties of the material. The partition function is a sum over all

possible spin configurations; although this sum is easily evaluated if the spins at

different sites are independent, coupling between spins makes this problem difficult.

The fact that all length-scales arc (in principle) equally important makes it difficult

to know what to do.

The problem is eased to some extent by considering models, such as the Ising

model, in which spin vectors are Boolean in character and are either 'up' or 'down',

with no intermediate states permitted. Another helpful feature of this Ising model

is that the spins only have nearest-neighbour interactions. Then the application of

RG to this problem can be understood as a form of coarse-graining, in the following

sense. The version of the RG method, called the block-spin transformation, consists

in breaking down an intractable problem with multiple scales of length into a sequence

of smaller problems, each of which is confined to a single length scale. This procedure

consists of three steps. First, the lattice is divided into blocks of a few spins each

(N 2, say, for a two-dimensional lattice). Then each block is replaced by a single spin

whose value is the average of all the spins in the block; there the average is determined

by the majority rule. Therefore, a new lattice is created with N times the original

spacing and 1/N the density of the spins. Finally, the original scale is restored by

reducing all dimensions by a factor of N.

Wc now provide a brief description on the RG transformation with the block

spin method. Our starting point is the Hamiltonian H0, associated with two spins

separated by a distance Lo (i.e. the lattice spacing). Then wc calculate an effective

Hamiltonian H1, associated with regions of size 2L0, by averaging out the effects of

scales L0. Next wc calculate//2, associated with regions of size 4L0, with the effects

of scales less than or equal to 2L0 averaged out. This well known block spin method

is due to Kadanoff (1977).

The above process can bc expressed in terms of a transformation 7", which is

applied iteratively: THo ---* H1, TH1 --* H2, 7"H2 ---* Ha .... At each stage, the length

scales are changed: L0 _ 2L0, 2L0 ---* 4L0..., and in order to compensate, the spin

variables are also scaled in an appropriate fashion (sec next subsection). It is this

rescaling which leads to renormalization, and the set of transformations {7"} defines

a semi- group: hence renormalization group. If iterating this transformation leads to

the result that an integer N exists such that

7"Hn = Hn+l = Hn, for alln > N

then Hn = HN (say) is referred to as a fixed point. In the case of critical phenomena,

6



this correspondsto acritical point. Weconcludethis brief discussionof the magnetic
caseby indicating how its methodologymay bc madeto comecloserto a continuum
problem (as in fluid motion), which is what concernsus.

Supposewc makethe Fouriertransformation from x-spaceto waveveetork-space.
Further supposethat wehaveeliminated (in somcway) the smallestlengthscales,less
than or equal to A-1, say,sothat weare left with a Hamiltonian which is a function
of continuousvariablesin k-space, H(A). Then we may formally eliminate further

modes in a band A/b _< k _< A, as follows (1 < b < co). Denote the thrcc-dimensional

spin field by S_(k), where c_ = 1, 2, or 3, and take the following steps:

1. Integrate out all S_(k) for which A/b <_ k <_ A.

2. Rescale the remaining modes of the spin field by enlarging wavcvectors by a

factor b.

3. Multiply cach S_(k) by a constant factor 4b.

The parameter b is known as the spatial rescaling factor, while _b is the spin rescaling

factor, and involves technicalities of the magnctic casc, which wc shall not pursue

here. If wc write the above three-step process as

H'= _H,

then the set Tb, 1 < b < oc is called the renormalization group. It is often remarked

that, since Tb-1 does not exist, this is strictly a scmi-group.

We shall now considcr RG as applied to thc 2D Ising model.

2.3

2.3.1

Renormalization group theory in critical phenomena

Iterative Hamiltonian structure

As we discussed already, an important and early application of RG was to critical

phenomena. Here we shall provide a morc detailed review of the calculation of Wilson

(1975; Wilson and Kogut, 1974) for the 2D Ising model. In the 2D Ising model

of ferromagnetism, one considers a lattice of points and on these lattice sites are

particles (called 'spin' particlcs) which (i) can take on only two values [i.e., 'spin up'

or 'spin down'], and (ii) can only interact with its nearest ncighbors. The system is in

thermal equilibrium, with a lattice temperaturc kBT. For simplicity, we shall consider

a square lattice with many spin particles. LFrom equilibrium statistical mechanics

(Huang, 1963), it is known that all thermodynamic propcrties of this systcm can be

determined from the partition function

Z = _ expHo[s] (1)
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wherethe Hamiltonian Ho, for the 2D Ising model,

Ho[s]= K E E s.s.+, (2)

K = -J/kBT, where J is the spin-spin interaction coupling constant [with J > 0 for

ferromagnetism]. The sum in (1) is evaluated over all possible spin configurations.

The outer sum in (2) is over all lattice points, while the inner sum, for the represen-

tative lattice site vector n = (nl, n2), is a sum over the four nearest neighbors of the

square lattice

E SnSn+i = 8nS(nlT1,n2) _- SrtS(nl--l,n2) -_- SnS(nl,n2 "_-1) -_- SnS(nl,n2--1)" (3)
i

Thc difficuly in determining the thermodynamic properties of this microscopic

Ising model is in the evaluation of the summation in (1) : there arc just too many

degrees of freedom 2. The important things to note are (i) the original problem in-

volved only nearest-neighbor interactions, (ii) the coupling strength K is related to

the strength of the interactions, J, and the lattice temperature kBT.

2.3.2 Iterative decimation of the number of degrees of freedom

Suppose that the degrees of freedom are decimated by restricting the summation in

Eq. (1) to run only over half thc lattice sites. Thus the partition function Z must
now bc determined from

Z = E exp[Hl[a]] (4)
1

where the new lattice sites are denoted as a, the sum is over these sites only, and//1

is a Hamiltonian to bc determined so that (4) yields the identical partition function

as Eq. (1).

It can bc shown that the new Hamiltonian H1 [a] takes the form

Hi[a] = (N2/2)A + 2B E #i#k + B E #i#Jt tk + C E #i#j#k#t (5)
nn nnn p

where "nn" denotes nearest-neighbor coupling, "nnn" next-nearest-ncighbor coupling

and 'p' the plaquettc four-spin interactions (Hu, 1982) with

A(k) = In2 + (1/8)[In(cosh4K) + 4ln(cosh2K)] (6)

B(k) = (1/8)ln(cosh4K) (7)

C(k) = (1/8)[ln(cosh4K) - 41n(cosh2K)] (8)

2We are actually using this 2D Ising model as an example of how to treat problems that have

so many degrees of freedom that new techniques must be introduced to solve them. The 2D Ising
model is actually exactly soluble, but that is not of direct concern to us.



HereA is simply a normalization. Eq. (5) should be compared to the original Ising

Hamiltonian H0, eq. (2). First we see the expected changes: (a) the nearest neighbor

interactions term has strength 2B(K), rather than K, and (b) there is a normaliza-

tion constant A(K) introduced duc to the change in the correlation length of the

decimated system, What is of significant interest is the appearance of new, non-

Ising, interactions: diagonal nearest neighbor interactions [strength B(k)], and four

spin interactions [with strength C(k)]. Therefore, although the original Hamiltonian

has only nearest-neighbor coupling, other types of interactions arc generated by the

rcnormalization group to compensate for the reduction in the number of degrees of

freedom. This is a general feature of the renormalization group (Hu, 1982).

Wc now proceed to the second iteration to determine the Hamiltonian //2 for

N2/22 lattice sites. H2 is to be determined so that the partition function Z remains

invariant under decimation of spins. If all the 4 terms arc kept in (5) in determining

/-/2, then one cannot calculate the sum over the decimated spins exactly. To pro-

ceed, one can start with the nearest-neighbor interaction and treat the other types

of interactions perturbativcly. Wilson proceeds under the assumption that the 4-spin

interaction (and any higher order spin interaction) is weak and can be neglected, but

it is critical that the "uuu" interactions bc retaincd. The self-consistency of these

assumptions can bc checked at the end of the calculation.

Hence, if at the i - 1th stage, the Hamiltonian is Hi-l[S], with its dependence

on the Ising (original) nearest-neighbor interaction strength K_-I and the (non-Ising)

diagonal-nearest-neighbor interaction Li-1, then at the i th iteration, the Hamiltonian

Hi[s] is a function of Ki and Li. It is important to note that only in degenerate cases
is the Hamiltonian form invariant under RG transformations.

2.3.3 RG transformations

Now for sufficiently weak interactions, one can expand the interaction strength coef-

ficients in a Taylor series in K = -J/KBT:

B(K) = In(cosh4K)/8 _ K 2 + O(K 4) (9)

C(K) = (1/8)[ln(cosh4K) - 41n(cosh2K)] = O(K4), (10)

allowing us to drop the 4-spin interaction term in (5). Note further that the coeffi-

cients for "uu" and "uuu" interactions are of the same order in K, requiring us to

keep these newly created diagonal "uuu" interactions. To determine the RG trans-

formation, wc must note the following: (a) the diagonal nearest-neighbor interaction

at the i th stage, L_, arises from the coupling coefficient B(Ki_I) = K__I + 0(K¢_1),

on using (7): i.e.,

Li = Ki21 (11)

(b) the ncarest-neighbor intcraction at thc i th stage arises from 2 terms: (i) the

nearest-neighbor interactions at the i- 1th stage, with coupling coefficient B(Ki_I) =



K2_l, and (ii) the diagonal-nearest-neighbor interactions at the i - 1th stage which

yields a coupling coefficient Li-1 to Ki. This is because the diagonal- nearest-neighbor

interaction at the i - 1th stage will become the nearcst- neighbor interaction at the

i th stage due to the decimation of spins.

Hence the RG transformations to proceed from the i - i th to the i th stage are

Ki = 2K__ 1 + Li-1 (12)

L, = K _I (13)
with

L0=0 (14)

since initially we are dealing with an Ising model which, by definition only has nearest-

neighbor interactions.

The fixed points, K. and L., of (12)- (14) arc immediately determined from:

There are 3 possible fixed points:

K. = 2K, 2 + L, (15)

L. = K. 2 (16)

K,1 = O, L.1 = 0 (17)

K.2 = oc, L.2 = oc. (18)

K.a = 1/3, L.3 = 1/9 (19)

and the initial domain of attraction in the K-L plane for these fixed points are readily

dctermincd (with L0 = 0): (a) for 0 < K0 < 0.39209, L0 = 0 : stablc fixcd point

is (0,0); (b) for K0 > 0.3921, L0 -- 0 : stable fixed point is (oc, oc); (c) for K0 =

0.39209, L0 = 0 : unstable fixed point is (1/3,1/9)

In the Ising problem, the relevant fixed point is the saddlc point (c). The fixed

point (a) corresponds to K. = 0 = J/kBT., i.e., T. ---* co. Physically, this corresponds

to a perfectly disordcred system, with only short scale fluctuations that tend to zero

as the number of RG iterations. The fixed point (b) corresponds to the temperature

T. = 0, and this corresponds to a perfectly ordered system, again with negligible

fluctuations. Hence, as far as critical phcnomena are of interest, these fixed points

are unimportant. However, the fixed point (c) is important since even aftcr all the

RG transformations, there arc still many length scales present. Critical exponents

prove to bc propcrtics of this fixed point.
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3 Application of RG To Turbulence

3.1 Similarity and differences between fluids and critical phe-

nomena

The macroscopic motion of a fluid may bc thought of as exhibiting two 'phase tran-

sitions'. That is, as we increase the Reynolds number of a given flow, we may expect

first a transition to turbulence and second a transition to scaling behaviour of fully

developed turbulence. In the latter case, this means the existence of an intermediate

range of wavcnumbers in which the energy spectrum takes the form of a power-law.

It is this transition which concerns us here. Specifically, we will assumc the iner-

tial range '5/3' law for the energy spectrum developed by Kolmogorov [1941]. As

an example, consider a stationary homogeneous isotropic turbulence whcrc energy

is injectcd with a forcing spectrum pcaked a wavcnumbcr k0(= 1//0), whcre l0 is

the integral length scale. The cnergetics of cddics with wavenumbcrs smaller than

a given wavenumbcr k are determined by an equilibrium between the injection, the

losses due to viscous dissipation and the energy flux function II(k) that moves energy

to higher wavcnumbcrs (i.e., to smaller scales). Herc, II(k) depends upon the inertial

terms in the Navier-Stokes equation, and is expressible in terms of the triple veloc-

ity correlation (see for example, Rose and Sulem, 1978). The problem is defined by

thrcc parameters plus the underlying Navier-Stokes equation. These parameters are

the kinematic viscosity, the total rate of dissipation, _, which equals the energy flux

function, and the characteristic lcnth 10. To make contact with the critical phenom-

ena, the external length scale l0 might bc considered analogous to a lattice constant

(Nelkin, 1974).

It is of course difficult to identify the onset of scaling behaviour as such and a con-

vcnient way to think about this problem is to consider the case where thc Reynolds

number (based on the turbulent microscale, say) is large enough for a power-law spec-

trum to exist over an appreciable range of wavcnumbers. Now define a local Reynolds

number, using the inverse of wavenumbcr as the length scale. Then as wc scan through

the wavenumbers, from the maximum towards smaller values, wc are, in effect, in-

creasing the local Reynolds number to the point whcrc power-law behaviour begins

(In other words, the boundary between the inertial and viscous ranges). Conceptu-

ally, therefore, the simplest application of RG to turbulence involves the progressive

elimination of high-k modes, with the fixed point corresponding to a rcnormalized

viscosity in the inertial range (The equivalent, in terms of CFD, would be a subgrid

effective viscosity, in large-eddy simulations). We shall carry out thesc operations on

the Navier-Stokes equations.

11



3.2 RG applied to the Navier-Stokes equations

We introduce the Fourier components of the velocity field us(k, t) in the usual way,

u_(x, t) = _ u_(k,t)e 'k'x. (20)
k

Then the solenoidal Navicr-Stokes equation for incompressible fluid motion takes the

form (e.g. see McComb 1990)

0t + t)

where

and

= AM, z_(k) / d3ju_(j,t)u_(k - j,t), (21)

M_z_(k ) = (2i) -l{k_D._(k) + k_D_(k)},

k_k_

D,z(k ) = 5_Z ik]2,

(22)

(23)

A is a book-keeping parameter, which can bc used to facilitate the iterativc solution

of the Navicr-Stokes equation by expanding in powers of )_. One then sets )_ = 1 at

the end of the calculation. This procedure is well known in statistical and many-body

physics and is usually referred to as thc A-expansion. It is believed, however, that this

expansion is divergent for the Navier-Stokes equation (Orszag 1977) nevertheless it
is utilized in all RG theories.

Turbulence almost invariably occurs because there is a mean rate of shear in a

fluid. If we wish to study stationary, isotropic turbulence, then the artificial nature of

this problem requires us to add hypothetical stirring forces to the right-hand side of

the Navier-Stokes equations, in order to maintain the turbulence against viscous dis-

sipation. Denoting the random force by f_(k, t), it is usual to specify its distribution
as multivariate normal and to choose the force-force covariance to be

(L(k,t)fz(-k,t')) = D_z(k)W(k)3(t- t'), (24)

where W(k) has dimensions of velocity2/time, and remains to be specified. Station-

arity requires that the rate at which the stirring forces do work is the same as the

rate of viscous dissipation _, or

where

fo°_4rrk2W(k)dk = _, (25)

_0 °°= 2uok2E(k)dk. (26)

It has always been normal practice in turbulence theory, to choose W(k) to be

peaked near the origin, so that its arbitrary nature is only of importance at low

12



wavenumbers,and a universal energyspectrum can developat large wavenumbers.
More recently, the application of RG to stirred fluid motion (Forster et al., 1977;
Yakhot and Orszag. 1986)has introduced theories which depend strongly on the
choiceof W(k). Accordingly, questions of how W(k) is chosen and justified must

then be considered. In particular, in this context, the question of whether or not

W(k) should depend on some characteristic length scale (such as the ultra-violet

cutoff A) will surface later as a major issue.

In order to try to carry out the RG algorithm given above in Section 2.2, we

consider the Fourier components to be defined on the interval 0 _< k <_ k0, where k0

is the largest wavenumber present and is of the order of the Kolmogorov dissipation

wavenumber (e.g. see McComb 1990). Then, for some kl, such that kl < k0, we filter

the velocity field at k = k_. Here, kl = (1-r_)k0 with 0 _< rl < 1. This may be

expressed in terms of the unit step functions,

1 if0_< k<kl (27)O-(k) = 0 if kl < k_< k0;

0+(k) = / 0 if 0 _< k _< k 1 (28)
1 ifkl_<k_<ko,(

allowing us to define the following useful filtered forms:

u2(k, t ) =O-(k)u_(k,t),

+
u, (k, t)=O+(k)u_(k,t),

Mo_(k ) = O-(k)M_#_(k),

+ 0 +M_ (k) = (k)M_#_(k).

Then substitution of these forms into equation (24) allows us to decompose the Navier-

Stokes equation into separate low-k and high-k forms, viz.,

(_0ot + "°k2)u2(k' t) AM_-#_(k) f daj {u_(j,t)u_(k- j,t)

+2u_(j,t)u+(k-j,t)

+u-_(j,t)u+(k-j,t)}, O< k < kl (29)

(_0
Ot + v°k2)u+(k't) = AM+_(k)/daj{u_(j't)u_(k-j't)

+2u_(j,t)u+(k-j,t)

+u-_(j,t)u+(k-j,t)}. ki <_ k <_ ko (30)

If we now try to carry out the first of the three steps outlined at the end of

Section 2.2, for the lattice-spin Hamiltonian, we can adapt that procedure to the

present (Navier-Stokcs) case, as follows:

13



1. Solveequation (30) for u +.

2. Substitute this solution into equation (29) for the u- and do a partial average
over the u +.

3. Terms resulting from this procedure which are linear in u- can be interpreted

as contributing an increment to the turbulent viscosity.

The main problems which arise due to mode-mode coupling, are easily understood:

• First, the solution of (30) for u + contains terms in u-. When these are sub-

stitutcd into the right-hand side of (29), the result is a triple nonlinearity in

the u-, which can then generate even highcr-order nonlinearities in subsequent
iterations.

• Second, averaging out the high-wavcnumber modes requires the hypothesis

which cannot be strictly true, as u- and u + arc just parts of the same velocity

field and arc not statistically independent. < ... > represents the partial average

over the high-wavcnumber modes.

It cannot bc emphasized too strongly that these two problems arc fundamental

stumbling blocks in applying RG to thc Navicr-Stokes equation. It is the way in which

thcy arc tackled which distinguishes one RG theory of turbulence from another. We

will discuss in detail two methods for dcaling with thcsc problcms: thc rccursivc

mode climination and the conditional avcraging mcthod. In thc approach to RG of

Forstcr et al (1977), Fournier and Frisch (1993), which culminated in the theory of

Yakhot and Orszag (1986), suitable assumptions arc made so that these problems are

avoided. This approach is described in the Sec. 6 of this review.

3.3 Iterative conditional averaging: a summary

We now introducc a method of eliminating turbulent modes which is based on tile

use of a conditional avcrage to distinguish between amplitude and phase correlation

effects. It has its roots in the method of iterative averaging, which was developed

over a number of years as a possible method of applying the renormalization group

approach to real fluid turbulence (McComb 1982, 1986, 1990). However, an essential

feature of the more reccnt work is the formal treatment of the conditional average and

the development of methods of approximating its relationship to the usual ensemble

average (McComb and Watt 1990, 1992; McComb, Roberts and Watt 1992).

The basic idea is that the turbulent velocity field in wavenumber space may be

decomposed into two distinct fields. One is a purely chaotic field; while the other is a
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correction field, and carries all the phase information. Application of this decomposi-

tion to a thin shell of wavcnumbers in the dissipation range allows the elimination of

modes in that shell; with the usual mode-coupling problems being circumvented by the

use of a conditional average. The (conditional) mean effect of the eliminated modes

appears as an increment to the viscosity, with terms of order _2 being neglected,

where r/ is a dimensionless measure of bandwidth thickness, such that 0 _< rI < 1.

An iteration (with appropriate rcscaling) to successively lower shells, reaches a fixed

point, corresponding to a renormalizcd turbulent viscosity.

3.4 Recursive renormalization group: a summary

If we return to the equilibrium Ising model, in Sec. 2.3, in which the Hamiltonian H0

involves only nearest-neighbor interactions, it was shown by Wilson (1975) that the

effective Hamiltonians Hn (n > 1) now involve both nearest-neighbor and diagonal

nearest-neighbor interactions. Form invariancc of Hn is then imposed by assuming

that the interactions of still higher order arc small. Similarly, in our form of rccursivc

RG (Zhou ct al., 1988, 1989; Zhou and Vahala, 1992, 1993a,b), as applied to the

Navicr-Stokcs equations, form invariance can be imposed, when both the quadratic

and the RG-induccd cubic nonlinearities are retained, by truncating the A-expansion.

The recursive RG theory extends Rose's (1977) treatment of the linear problem of

passive scalar convection to Navicr-Stokcs turbulence and eliminates the small scales

recursively. Navier-Stokcs equation include (1) a rcnormalized eddy viscosity and (2)

a triple product in the fluid velocity. The eddy viscosity is calculated by means of a

difference equation (Zhou et al. , 1988, 1989) or, in the limit r1 --* 0, by means of

a differential equation (Zhou and Vahala, 1992). The resulting eddy viscosity term

exhibits a mild cusp behavior in the rcnormalizcd momcntum equation (Zhou ct al.,

1988, 1989). The triple velocity products arc absent only when there is a spectral

gap between the subgrid and resolvable scales (Zhou ct al., 1988). Beyond the second

iteration, the RG-induced triple products also contribute to the eddy viscosity in the

rcnormalized Navicr-Stokes equation. The recursivcc RG, therefore, has potential for

capturing a variety of dynamical features that depends on the interplay between local

and nonlocal triad interactions (Zhou, 1993a,b; Zhou et al. , 1995).

It is of particular interest to dctcrminc the effect of the new triple velocity product

on the resolvable scale energy transfer and the difference, if any, from that of the

usual Navier-Stokcs quadratic velocity product, and wc do this by considering their

individual contributions to the eddy viscosity. Within rccursivc RG theory (Zhou and

Vahala, 1993a), it has bccn shown that the triple velocity product in the rcnormalizcd

momentum equation, which produces a fourth order velocity product in the cnergy

equation, removes energy from the resolved scales. The averaged fourth-order product

can be decomposed into a product of averaged second-order products and formally

takes the form of a gradient diffusion process with eddy viscosity UT. The triple

term contribution to the eddy viscosity is zero as k --* 0 and increases rapidly as
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k --_ kc. Here kc is the cutoff wavenumber which separates the resolvable and subgrid

scales. The spectral eddy viscosity is simply the sum of the contributions from the

momentum equation and the triple nonlinear term and it appears to be in qualitativc

agrcemcnt with the closure theory (Kraichnan, 1976; Chollet and Lesieur, 1981) and

direct numerical measurement (Domaradzki et al., 1987; Lesieur and Rogallo, 1989;

Zhou and Vahala, 1993a). In particular, it prcdicts the correct asymptotic behaviors

of the eddy viscosity as k _ 0 and k _ kc. The methodology has been applied to

the passive scalar being advected by incompressible turbulence (Zhou and Va.hala,

1993b).
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Part III

Technical Aspects of selected RG

approaches

4 Iterative conditional averaging: details

In this section we amplify our earlier summary of the method and show in some more

detail how the iterative conditional averaging technique is used the implement the

general strategy of the rcnormalization group for Navier-Stokes fluid turbulence.

4.1 The conditional average

First of all, we formulate the operation of taking a conditional average. Then wc use

this average in such a way that we can climinatc the triple nonlinearity referred to

earlier.

The idea is quite simple. Putting it at its most basic level, we select from the full

ensemble of turbulence realizations a sub-ensemble, the members of which have their

low-k modes equal to u_(k, t). Then we perform averages of functions of the + k

over this sub-ensemble.

However, there is more to it than this. If u(k, t) is the solution of the Navier-

Stokes equation, corresponding to prescribed boundary conditions, then wc are faced

with (in principle) a deterministic process and to prescribc u- is to prescribe u +.

That is to say, if u- is invariant under our conditional avcragc, then so also is u +. In

order to gct round this problcm, we invoke the defining characteristic of deterministic

chaos. This is to the effect that any uncertainty in the specification of the systcm

will be amplified exponcntially; so that as time goes on the diffcrcncc between almost

identical solutions will increase to the point of unpredictability. In the present casc,

we replacc the concept of time going on, by the number of steps of the cascadc

in wavenumbcr. That is, our ideas about thc turbulcnt cascadc, and particularly

ideas about localncss of cncrgy transfer, suggest that, if wc prescribe conditions at

wavenumbcr kl, thcn u+(ko, t) will be unaffectcd, provided that k0 is much larger

than kl. In other words, as the bandwidth becomcs large (z] _ 1), the conditional

average of u + becomes frec of constraint and wc can cxpect that

t))c t)).

On the other hand, for ko _ kl, it is intuitively clear that the conditional average

must tend to become effectively deterministic, with

(u+(ko, t))_ -+ u+(ko, t).
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We shall return to this at a later stage,but for the presentit shouldbeappreciated
that the point at issuehere is oneof phasecorrelation. If two realizationsareslightly
out of phaseat wavenumberkl, then wc can (given the nature of turbulence) expect

that this phase difference will amplify exponentially, so that phase correlation will

decline throughout the band as one moves from kl to k0. Hence, for u+(ko, t) to be

chaotic, despite the prescription u+(kl, t) = u-(kl, t), it is a requirement that the

bandwidth be large enough. This imposes a lower bound on possible values of the

bandwidth parameter r].

We may take account of these various aspects by introducing a fuzzy criterion

for our conditional average. We now choose as our sub-ensemble, the subset of real-

izations for which the low-k modes differ from u-(k, t) by a small amount O-(k, t).

Obviously (I)- is an arbitrary criterion (apart from the constraint that u- + (I)- must

bca possible solution of the Navicr-Stokes equation) and should be chosen to satisfy

the conditions which we wish to impose upon our average.

Wc shall not go into this procedure any further here, and in order to simplify the

algebra, we shall omit the (I)- from the equations. The interested reader who wishes

to pursue the matter will find a full account in the papers by McComb and Watt

(1992) and McComb et al (1992).

4.2 Conditionally-averaged equations for high and low wavenum-

bers

Let us now denote the operation of taking a conditional average over the modes in

the band kl < k _< k0 by angle brackets, with a subscript 0. This notation per-

mits the subsequent generalization to subscripts 1, 2,..., n, as wc remove shells of

wavcnumbers progressively. Then, we list the ideal defining properties of the condi-

tional average as

(u-(k, t))0 = u-(k, t), (31)

(u-(k, t)u-(k', t))0 = u-(k, t)u-(k', t), (32)

and so on, for products of the low-wavenumber modes of any order.

We now conditionally average both equations (29) and (30) which are, respectively,

the low-k and high-k filtered Navier-Stokes equations.

First, we obtain the conditional-averaged NSE on the interval 0 < k <_ kl, by

averaging according to equations (31) and (32), to obtain

0
(_ + vok2)u[,(k,t)

P

M_-Z_ (k) J daj {u_(j,t)u_(k - j,t)

+2u_(j,t)(u+(k - j, t))0

+(u_(j,t)u+(k- j, t))0}. (33)

18



We now repeat the steps just taken, but this time we apply thcm to equation (33)

for thc high-k modcs. Thus, wc get

(o_+ _,ok2)u_+(k,t) = M+_._(k)/daj {u_(j,t)u_-(k-j,t)Ot

+2u_(j,t)u+(k -j,t) + u-_(j,t)u+(k -j,t)}, (34)

and taking the conditional average of each term according to equations (32) and (33),
gives

(_o
Ot + v°k2)(u+(k't)}° ./daj {u_(j, t)u_ (k - j, t)M+_ (k)

+2u_(j,t){u+(k - j, t)}o

+(u_(j,t)u+(k - j, t)}o}.

(35)

4.3 First-shell elimination using the two-field decomposition

Our objective now is to solve equation (35) for the conditional average (u_-(j, t)u + (k - j, t)/0

and substitute the result back into (33), in order to have a closed equation for the low-

wavenumbcr modes. In order to do this, wc shall ultimatcly have to reckon with the

need to relate conditional averages to full ensemble averages. Accordingly, wc begin

this section with the two-field decomposition which is our basis for this procedure.

Let us write the exact decomposition:

u+(k, t) = v+(k, t) + A+(k, t), (36)

+(k, t) is any othcr realisation of our turbulcnt cnscmblc. In other words,wherc v_
+ +

v_ (k, t) has exactly the same statistical properties as u s (k, t), but has no phase

relationship to u_(k, t). It follows, by definition, that A+(k, t) is simply a measure

of the phase difference (in the band of modes to bc eliminated) between the two

realizations. It also follows that, from the point of view of the realization under
+kstudy, v_ ( , t) is the purely chaotic part of the field and A+(k, t) is the correction

field which carries all the phase information.

We are now in a position to write down an expression relating the conditional

average of the high-wavenumbcr part of the velocity field to its full ensemble aver-

age. Taking the conditional average of both sides of equation (33), it may be shown

McComb et al (1992), or it is intuitively obvious, that

(u+(k, t))o = (v+(k,t)) + (A+(k,t))o. (37)

Now wc scck a relationship between v + and u +, which is such that the conditionally

averaged correction term (_+/0 may bc neglected as small. In other words, wc need
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an ansatz for thc correction term and naturally this will depend on the physical nature

of thc system that we arc studying.

In the case of macroscopic fluid turbulence, we are guided by the well established

idea that turbulent energy transfer in wavenumber takes the form of a cascade and is

thereforc to some extent local in wavenumber. In terms of our present approach, wc

take this to mean that, in any particular realisation, the effect on phase correlation

of the mode-mode coupling is short-range in k-space. Thus, on a statistical picturc,

based on many such realisations, modes which are widely separated may be taken to

be indcpcndent of each other. Hencc, providing that the bandwidth paramctcr _ is

not too small, we can assume that u+(k0, t) is independent of u+(kl, t), in the sense

that we can write

(u+(k0, t))0 = (u+(k0, t)} = (v+(k0, t)), (38)

where the last step follows from the definition of v +, as another realization of the

turbulence ensemble with the same statistical properties as u +, but with no phase

relationship to u-.

This now leads us towards a natural ansatz for the relationship between v + and

u +. Relying on the fact that we are dealing with a problem in continuum mechanics,

we take v+(k, t) to be given by a first order truncation of the expansion of +u_(k,t)

in Taylor series about k = k0, thus:

v+(k, t)= u_+(ko, t) + (k - ko).Vku+(k, t)]k=ko +O(r/2). (39)

Note that wc conclude that terms of order _2 have been neglected because the maxi-

mum value of [k - kol is _?k0. Hence it follows that we have

(A+(k, t))0 = O(n2). (40)

It also follows, therefore, that we arc simultaneously imposing both upper and

lower bounds on acceptable values of _. On the one hand, 7/must bc large enough for

us to assume that u+(k0, t) is independent of u+(kl, t); while, on the other hand,

must be small enough for us to neglect terms which are of order _2 in equation (39).

Then, with all these points in mind, above equations yield for the viscosity acting

on the explicit scales:

ul = Vo + 5Uo, (41)

whcrc thc formula for thc increment to viscosity is

1 L(k,j)Q+(]k - j[)

6uo(k) = -fi/daj v-_v-_--j7 + O(rf_), (42)

with 0 < k < k_, k_ < j, [k - J l - k0 and Q+ is merely an extension of the spectral

density to the v + field. The coefficient L(k,j) is given by

L(k,j) = -2Mpz._(k)Mzp_(j)D_(]k- j])

= _[p(k 2 + j2) _ kj(1 + 2#2)](1 - #_)kj
k 2 + j2 _ 2k j# ' (43)
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where # is the cosine of the angle between the vectors k and j.

Wc extend the procedure to further wavenumbcr shells, as follows:

(a) Set u_(k, t) = u_(k,t) in equation (19), so that wc now have a new NSE with

effective viscosity V 1 (k) for Fouricr modes on the intcrval 0 < k < kl.
+(b) Make the decomposition of (61), but this time at k -- k2, such that u s (k, t) is

now defined in the band k2 _< k _< kl.

(c) Repeat thc procedures used to eliminate the first shell of modes in order now

to eliminate modes in the band k2 _< k _< kl.

In this way, wc can progressively climinatc the effect of high wavcnumbcrs in a

series of bands kn+l < k < kn, where

kn=(1-_?)nk0 ;0__<_< 1, (44)

with, by induction, the recursion relation for the effective viscosity given by

/]n+l(k) _- pn(k) -_ (_/]n(k), (45)

where the increment of order n takes the form

1 f d33L(k,j){Q(1)lz=k,_. + (1- k,_)°Qa-_/It=k,_ + O(7/2)} (46)5un(k)
J Vn(j)j 2 + "n(Ik- jl)lk- 512 '

Also, we may form an energy equation for the explicit scales, hence obtaining the

rcnormalized dissipation relation, viz:

fo k" 2L,n(k)E(k)dk = e, (47)

which may be compared with the unrenormalizcd where kn and vn should bc replaced

by k0 and P0, respectively.

If we now assume that the energy spectrum in the band is given by a power law

and make the scaling transformation

kn+l = hk,, (48)

where, for compactness, we define h -- (1- 77), it follows from equations (45) and (46)

that the effective viscosity may bc written

l/(knk' ) ___ c_1/2(1/3kn4/3_]n(k ') (49)

where a is the constant of proportionality in the assumed spectrum. Now the recur-

sion relation becomes

_n+l(_g') : h 4/3 _n ( hk' ) -_ h-4/3 (_n ( k' ) (50)

with

- 147rk '2 / d3j '
L(k',j')Q'

_n(hj')j '2 + _,n(hl')l '2
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for the wavcnumberbands0 < k' < 1; 1 < S, l' < h -1 where l' = Ik' - J'l, and

Q' = h n/3 - 11h14/_(I' - h-') + h.o.t. (52)
3

Iteration of equations (50) and (51) reaches a fixed point and once this fixed point

is found wc can calculate the Kolmogorov constant by solving equations (47) and

(49) simultaneously. One merit of taking c_ as a test is that it does have known

experimental valucs, albeit scattered in the range 1.2 < a < 2.2. Our calculated value

of the Kolmogorov spectral constant is c_ = 1.60 ± 0.01 independent of bandwidth in

the range 0.25 __ r/__ 0.45, and in good agreement with experiment. For values of r_

outside this range, the calculated a diverges from the experimental value. At large

values of _7, this is due to the breakdown of the first-order Taylor scrics approximation,

while at small values, one is seeing the effects of mode coupling, which would invalidate

the assumption that u(k0) is independent of u(kl).

5 Recursive RG

5.1 Introduction

Wc shall apply recursive renormalization group (RG) procedures to the problem of

subgrid modeling. Subgrid modeling is necessary for the high-Reynolds number tur-

bulent flows of interest because of the limitations of current and forsccablc super-

computers. A motivation is that the spectral transport coefficients (such as the eddy

viscosity) determined from rccursive RG theory can be compared to those arising

from closure-based theories (Kraichnan, 1976; Chollet and Lcsieur, 1981). It should

be noted that the transport coefficients in these closure theories arc determined over

tile entire resolvable scales, and are a function of k in the resolvable scales.

In particular, we point out here that in e-RG, a small parameter e is introduced

through the forcing correlation function. Yakhot _z Orszag (1986) have to extrapo-

late from _ << 1 to e _ 4 in order to reproduce the Kolmogorov energy spectrum.

Furthermore, it is also necessary to take the distant interaction limit, k --_ 0. Thus, it

is difficult to compare the wave-number dependent transport coefficients (Kraichnan,

1976; Leslie and Quarini, 1979; Chollct and Lesieur, 1981), with that determined
from _-RG.

In rccursivc RG, no attempt is made to introduce a special form of overlapping

as in conditional averaging, but one proceeds directly with standard averaging and

handles thc triple nonlinearity directly. The basic diffcrcnces between the recursive

and ( RG procedures are that in recursivc RG:

(i) The _-cxpansion is not applied.

(ii) Thc turbulent transport coefficients are dctcrmincd for the whole rcsolvablc

wavcnumbcr scalcs,
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(iii) Higher order nonlinearities arc generatedin the renormalized momentum
equation and play a critical role in determining the transport coefficients.

(iv) RG rescaling,as in conditional averagedRG, is performed.
It shouldbe emphasizedthat there arc two singular limits: h ---* 1 and k _ 0. A

careful analysis must be done regarding these two limits and the associated averaging

operations. We will address this issue here in the present review.

5.2 Renormalized momentum equation

For notation consistency, we shall use "+, -" instead of ">, <" which arc typically

employed in rccursivc RG.

The first and third terms on thc RHS of (29) are symmetric in j and Ik-Jl in

terms of their respective wavcnumbcr constraints in wavcnumbcrs. As a result, the

distant interaction limit k ---* 0 has no effect on the existence of these terms, and

these terms will give rise to the standard quadratic nonlinearity (first term of Eq. 29)

and eddy viscosity (third term of Eq. 29). However, the second term on the RHS of

(29) has the following constraint: j is in the subgrid while Ik -Jl is in the resolvable

scales. Specifically, the consistency condition requires that, for small k, j satisfies

j > kl and j < kl + kz

where k .j = kjz. Since Izl < 1, the range of integration must be O(k).

Thus, the second term on the RHS of Eq. (29) can not contribute in the limit

k _ 0 since the intcgrand is bounded. Now it is well known that the higher order

nonlinearities are induced by this second term under discussion. Since this term is

absent in the k --_ 0 limit, we conclude that the higher order nonlinearies will not

contribute to the rcnormalizcd momentum equations and rccursion relation for the

transport coefficients in the distant interaction limit, k _ O. However, they will

contribute to the rcnormalizcd Navicr-Stokcs for 0 < k _< kl. Atcr obtaining the final

renormalizcd Navicr-Stokes equation

[O/Ot + u(k)k2]u_(k,t) = f_(k, t) + M_,y(k) f dajuz(j,t)u_(k - j,t)

+2 _+_ M_z_(k) dajdaj'.l---_M_z,_,(j)u_,(j',t)u_,(j -j',t)u_(k-j,t). (53)

by removing other subgrid shells itcrativcly, one can write down the corresponding

wavenumbcr restrictions and perform the same analysis on the k --_ 0 limit.

5.3 Galilean invariance of the renormalized Navier-Stokes

Here, we turn our attcntion to the question of the Galilcan invariance of the rcnormal-

ized Navicr-Stokes equations. The importance of Galilcan invariance in turbulence
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modelling has been emphasized by Speziale (1985). To be consistent with the basic

physics, it is required that the description of the turbulence be the same in all inertial

frames of refcrence. The appearance of the triple nonlinear term, which is a function

of the resolvable scales velocity fields, makes the property of the Galilean invaxiance

of our rccursive RG procedure not transparent. We now show that the renormalized

Navier -Stokes equation is Galilean invariant (Zhou and Vahala, 1993b).

Thc Galilean transformation is

x --* x* - U0t* t ---* t*.

Hcrc U0 is an uniform velocity ficld. Thus, one has

0 0 0 0 0
u = u* - Uo, - - + Uo • --

Ox Ox* Ot Or* Ox* "

While the GMilean transformation for the Navier-Stokes equation in physical space

is trivial, the Galilean transformation in wavcnumber space is less obvious, due to

the lack of differential operations. For convenience, we first review how Galilean

invariancc is preserved for the Navicr-Stokes equation in the wavenumber space.

Under the Galilean transformation, the LHS of the Navicr-Stokcs equation [cf.

Eq. (21)] bccomcs

Ou_(k*,t)
+ Uozik*_u*_(k*,t) + vok*2[-Uo_(k *) + u_(k*, t)]

&*

Ou*(k*,t) .2 • •
- cot* + Uo_ik*_u*_(k*,t) + vok u_(k ,t)

where in the last step, wc have used the the 5 function property k*25(k *) = 0.

Also, under the Galilcan transformation, the RHS of thc Navier-Stokes equation
becomes

M,z_(k* ) / d3j[u*z(j *, t) - UozS(j*)][u_(k* - j*, t) - U0_5(k* - j*)]

Moz_(k*) f 3 .. • .. "* t) + _Uozk_u_(k ,t)= d 3 uz(3 ,t)u;(k*-j , " * * *

where we have used the property of the _ function, the incompressible condition, and

M_z_(k*)Uozu*_(k*, t) = _ k* *"*Uo_ zU,(K ,t)/(2i)

Thus, as expectcd, the Navicr-Stokcs cquation is invariant under a Galilean transfor-

mation due to the cancellation of the second term on the RHS.

To show that the renormalized Navicr-Stokes equation is invariant under a Galilean

transformation, wc necd only consider the rccursive RG induced triple nonlinear term,

denoted by NST:
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NST 2M_z_(k ) f d 3 d 3 " j "4/3Mzz'_'(J) "= 3 3_) _ uz,(j-j',t)u_,(j',t)u_(k-j,t)

It is important to note that j is in the subgrid.

Under a Galilean transformation, Eq. (54) becomes

(54)

NS_ 2M_z_ (k*) f
3x, _3_,,{J*_4/3Ma_._(J *)

= d _ _ _ _, _ [u_,(j* -j'*,t) - U0z,5(j* - j'*)]

[u;,(j'*, t) - Uo_,5(j)'*][u;(k* - j*, t) - U0_5(k* - j*)]

Since j* is in the subgrid scale, while j'* and k* arc in the supcrgrid, 5(k* -j*)

and 5(j* -j'*) can never be simultaneously satisfied. As a result,

2Mo, (k.) . .,. . .,*** ..NS_, • ",2 u_,(j* t) [%, (j'* , t)= j _ -j , -Uoz,5(j )]u_(k-j ,t)-(kc)3
(55)

Now only one term in Eq. (55) could violate the Galilcan invariance of the renormal-

izcd Navier-Stokes equation. However,

3 .,, .,, • ., j,, • .,d j -j ,t)

This is not permissable since u}, --= u-*z, and j* is restricted to the subgrid. Thus

NST = NS_. Hence the triple term is Galilcan invariant.

5.4 The effect of cubic nonlinearity

We consider the contribution of the triple nonlinear term in the renormalized mo-

mentum equation to the eddy viscosity. The second moment for the velocity field is
defined as

U_z(k,t ) =< u_(k,t)uz(-k,t) >. (56)

The time evolution of U,z(k, t) is

__ TOU_z(k't) -2u(k)k2U, z(k,t) + T_(k, t) + T2z(k, t ). (57)
0t

In this equation, TD_(k, t) is the standard energy transfer from the quadratic nonlin-

earity. In contrast, TT_(k, t) = -2uT(k)k2E(k) is the energy transfer arising from the

RG induced triple nonlinearity. It is readily shown that
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T _ [k+kc q)lk _ jl-_-2j_+l/3T_a(k, t ) 1 1 djdzL(k,j, (58)
vT(k) _-- 2E(k)k 2 2v(kc) k 2 Jkc v(k - j)

It has been shown that that _T(k) is the major contributor to the cusp-like be-

havior of the spectral eddy viscosity as k ---* 0 (Zhou and Vahala, 1993a). This type

of term was found to be the major contribution to the strong cusp in the spectral

eddy viscosity found from the closurc models (Kraichnan, 1976; Leslie and Quarini,

1979; Chollet and Lesieur, 1981).

Rose (1977) discussed thc role of the triple nonlincar terms in physical space. He

pointed out that it represents the possibility of an exchange of scalar eddies between

the resolvable and subgrid scales. This effect is an inhcrent property of measurements

made on the passive scalar system with instruments which have a spatial resolution

limited to an eddy width size greater than 1/kc.

5.5 Difference equations for the renormalized eddy viscosity

After the removal of the (n + 1) th subgrid shell, the spectral eddy viscosity in the

renormalizcd momentum equation is determined by the rccursion relation

where

and

.n+l(k) = .n(k) +

5vn(k) = Do _ f ,3 . L(k,j, q)ik - j]-Y
k_- h2=__0J a g/jh(_l _ -- j-_]k - 2[ 2,

(59)

(60)

kj(1 - z2)[zq 2 - kj]

L(k,j,q) = - q2 , (61)

with k. j = kjz and q = Ik-j].. This difference equation, after rcscaling, has been

solved by Zhou ct al. (1988, 1989) and fixed points were readily determined for

finite h < 0.7. Note that the spectral eddy viscosity shows a mild cusp as k ---* kc,

in qualitative agreement that that of closure theory. However, it was very difficult

to determine fixed points for finer subgrid partition factor h :> 0.7. In thc next

subsection we shall pass to thc differential subgrid limit h ---* 1 and dctermin an

ordinary differential equation (o.d.e) for thc renormalized eddy viscosity over the

entire resolvable scale which can be readily integrated.

5.6 Differential equations for the renormalized eddy viscosity

The differential limit, h --- 1, is a singular one and this point has been discussed

recently (Zhou and Vahala, 1992). In particular, it is related to the assumption of
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local versus non-local interactions in k. In this section we will calculate the eddy

viscosity under the differential equation limit for recursive RG.

For rccursivc RG we will find that the differential equations hold throughout the

resolvable wavcnumber range 0 < k _< kc. This should be contrasted with the e - RG

eddy viscosity differential equation which is valid only in the k ---* 0 limit.

5.6.1 The differential equation limit, h -_ 1

Wc now derive the differential equation from which the transport coefficients for finite

k, 0 < k < 1, arc determined. The o.d.c, in the distant interaction limit (k = 0)

will bc derived in the next subsection. After the rcscaling, we rewrite the rccursion

relation in the form

/]n+l(k)- h(Y+l)/3_,,_(hk) = h(Y+_)/35vn(hk). (62)

For h --* 1, the number of interation n --_ oc. Similarity consideration leads to

.(k),

The LHS of Eq. (62) becomes

v(k)- [1- _?](Y+l)/3_[k(1 - _)]-_ ,[_ +
L a_

n (63)

+1
Y-----v(k) + O(T/)] (64)2

As noted earlier, the partial average of Rose must be employed in order to ensure

the existence of the differential limit. The partial average is introduced since the

distinction between the resolvable and subgrid scales becomes fuzzy in the limit of a

diffcrcntial subgrid partitioning, h _ 1.

Following Rose, we first change the variable from j, z to j, q , with djdz =

(q/kj)djdq, so that the RHS of EQ. (62) becomes

where

and

L(k,j,q)

fj djdq(_j) v(j)k2L,(lk _ jl)lk - jl21k - jlY&,(k)

+/djdq(_jj) L(k,j,q) J ) (y+1)/3.(j)k2.(lk - jl21k _ jp,( 

r] fl<q<l+k dq k_v2kl_-q,_)_l ÷ rlffl<j<l+k "L(k' j' l ) j (y-2)/a
t )q

L(k, 1, q) = k(1 - z2)(k - zq2)/q 2

L(k,j, 1) = kj(1 - z2)(kj - z).

(65)

(66)

(67)
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As a result, the fixed point renormalizededdy viscosity v(k) is determined from

the o.d.e, at O(A)

where

_k k) y+l 1k + ----_v(k) - v2(1 ) [A_(k) + B_(k)] (68)

1 fl+k. L(k, 1, q)

A_,(k) = -£5 Jl aq -__-f (69)

1 fl+k
B_,(k) = --_ J1 djL(k'j'l)J(Y-2)/3 (70)

Here, z is evaluated at j = 1 and q = 1, respectively in the L(k, j, q) expression. The

o.d.c, for the momentum equation eddy viscosity is readily solved (Zhou and Vahala,

1993a).

5.6.2 Differential equations in the k -, 0 limit

In the limit k -_ 0, we have seen that the triple nonlinearities induced by RG do not

contribute to the eddy viscosity. As a result, the recursion rclation will now contain

only the usual quadratic contribution. Wc furthcr simplify the analysis by taking

the standard subgrid linear propagator Ghl(lk -- Jl) = [_0Ot -_- Uh(]k -- Jl)] _ Ghl(lJ]) as
k --_ O.

The limits of the integration are given by

l < j- kz < I/f,

Thus, one has

5vn(k) -- S- F- a

where the integral limits for these terms are

f111/fdj £ dz for

foldZ fll+kZdj for

l +kz < j < 1/f +kz (71)

(72)

s (73)

F (74)

o fl/f
/_1 dz dj for G. (75)

J1/f +kz

Terms F and G arc the corrections to the symmetric term S. They arc important

for a finite bandwidth f. However, it is easy to show that F + G = 0 for f _ 1 in
the k ---*0 limit. Hence

[ 811 1 dz[1-z2][z+ (yz2-1)]=_15v2(1) (76)
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while the LHS of the sameequation yields

k d_,(k) y + 1
+ --, --

since _ is bounded as k ---, 0.

Thus, as k _ 0,

.(k 0) =

y+l

3
u(k), as k--0

3 8 1

y+l 15 _2(1)"
(77)

Again, the o.d.e, for the momentum equation eddy viscosity is readily solved. We

observe that the eddy viscosity has a similar plateau structure as k _ 0. As k _ kc,

eddy viscosity displays a weak cusp like behavior as k _ kc. In this case, those curves

arc similar to that of Zhou et al (1988; 1989).

5.7 Recursive RG Spectral eddy viscosity

The spectral eddy viscosity is simply the sum of the contributions from the momentum

equation and that of the effect of the RG induced triple nonlinear term in the energy

equation. It is apparent that our calculation is in qualitative agreement with that

from the closure theory (Kraichnan, 1976; Chollct and Lesicur, 1981). and direct

numerical measurements (Damaradski ct al., 1987; Lesieur and Rogallo, 1991; Zhou

and Vahala, 1993). In particular, it predicts the correct asymptotic behaviors of the

eddy viscosity as k ---* 0 and k ---* k_ (Kraichnan, 1976).

5.8 Numerically evaluated eddy viscosity

These conclusions can be tested directly using numerical simulation databases. In-

deed, energy transfer and spectral eddy viscosity can bc analyzed using results from

dircct numerical simulations by introducing an artificial cut at a wavenumber k_ that

is smaller than the maximum resolved wavenumber km of the simulation. With this

fictitious separation between the subgrid and resolvable scales, it is possible to eval-

uate the effect of the subgrid kc < k <km on the resolved scales k < kc. Wc form an

energy equation from the momentum equation and introduce the following notation:

T><(k) and T>>(k) represent the spectrum of energy transfer to mode k resulting

from interactions with one and both modes above the cutoff k_ respectively. Measure-

ments of numerical simulation databases indicate the following (Zhou and Vahala,

1993a):

• T>>(k) removes energy throughout the resolvable scales in a manner consistent

with the notion of eddy viscosity.

• T ><(k) removes energy from thc last resolved octave that was transferred therc

by the resolved scale transfer; that is, it allows the local flow of energy through k_.
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It is the most important subgrid effectnear kc and accounts for most of the energy

flow from the resolved scales.

The subgrid spcctral eddy viscosity v>>(k) and v><(k) can bc determined from

T>>(k) and T><(k) for a given energy spectrum, E(k). Specifically, v>>(k) =

-T>>(k)/2k2E(k) and v><(k) = -T><(k)/2k2E(k). Two important features of

the quadratic contribution v>>(k) should bc stressed. First, its positive constant

asymptote at small k indicates that the concept of modeling this contribution as an

eddy viscosity in analogy to the molecular viscosity is plausible, and second, its value

decreases monotonically as k increases toward kc. This indicates that if wc include

only the contribution of quadratic velocity products, there is no eddy viscosity cusp at

the cutoff k_. The most important feature of v><(k) is the sharp incrcasc at k --_ k_.

6 Reconsideration of the YO theory

Robert Rubinstein

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681

The first comprehensive application of RG methods to turbulence was the Yakhot-

Orszag (1986) theory (YO). This theory built upon earlier work by Forster et al

(1977) and Fournicr and Frisch (1983), but completed the development suggested by

its predecessors with impressive successes including simple analytical calculations of

the Kolmogorov constant 3 and several constants of interest in turbulence modeling

(Spczialc, 1991). Nevertheless, this theory continues to generate controversy. Three

points will be addressed in this section about which particularly strong objections
havc been raised:

1. YO's treatment of mode elimination

2. the "correspondence principle"

3. the e-expansion and distant interaction limit

This section draws heavily on work of Woodruff (1992, 1993) which emphasizes the

connections between the YO theory and Kraichnan's (1959) direct intcraction ap-

proximation (DIA). Although this viewpoint tends to de-emphasize the importance

of mode elimination characteristic of renormalization group theories, it is consistent

with the remark of Eyink (1994) that YO is not a truc RG theory in any case.

In this Section, the following notation will be used:

_:=(k, gt) k=(p,_) 0=(q,_-w)

3The Kolmogorov constant had becn computed earlier by Kraichnan (1964) by numerical inte-
gration of the LHDIA closure.
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wherethe triangle condition

holds throughout.

k=p+q

6.1 YO's treatment of mode elimination

It was noted at the end of Sect. 3.2 that iterated mode elimination leads to two

fundamental problems: it generates nonlinearities of higher order than appear in

the Navier-Stokes equations, and it requires some simplifying assumptions to permit

averaging over the high wavenumbcr components of the motion. These difficulties

arise because, by itself, mode elimination, like the field theoretic functional formula-

tions of the turbulence problem, does nothing more than reformulate the equations

of motion. In order to make progress, statistical hypotheses must bc introduced.

This circumstance is not surprising: for example, equilibrium statistical mechanics

requires Gibbs' hypothesis, a very strong assumption which certainly does not follow
from Ncwtonian mechanics.

Nevertheless, subsequent work has shown that the original treatment of mode

elimination by YO was not entirely satisfactory. For example, their proposal that

higher order nonlinearities arc negligible in a certain perturbative sense, was contra-

dicted by Eyink (1994). 4 But by placing the YO theory in the setting of DIA-like

closures, these problems are understood by invoking the statistical hypotheses of these

closures. Thus, higher order nonlinearities can indeed be considered, but in the con-

text of higher order versions of DIA (Martin et al, 1978). Accordingly, the absence

of these nonlinearities in the YO theory merely reflects the order of approximation

chosen, and requires no further justification.

The treatment of averaging over the small scale motion, which appears to proceed

as if motions of different scale were independent, has been discussed in Kraichnan's

(1959) original presentation of DIA: the same requirement arises in the derivation of

the DIA response equation. Heuristically, the DIA closure assumes that the velocity

field is only weakly non-Gaussian. Therefore, the motions of different scales, which

are uncorrelated because of the kinematic hypothesis of homogeneity, are independent

to leading order. This statistical hypothesis also justifies the breakup of fourth order

moments into products of second order moments. A theory in which the motions

of different scale are not independent to leading order, but in which fourth order

moments are treated by the quasi-Gaussian hypothesis, must be carefully formulated

to avoid inconsistency.

4yo had asserted that higher order nonlinearities are 'irrelevant' as this is understood in Wilson's

(1974) theory when e = 0, although they are only marginal when e = 4. Eyink (1994) demonstrated
that, on the contrary, higher nonlinearities arc marginal regardless of e.
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6.2 The correspondence principle

The starting point of YO's analysis is the Navier-Stokes equations driven by a random

force:

fk d_d 0 Um(15)un(_) = f_(]c)- i_ui ([c) - M+mn(k) =_+0 (78)

where the Gaussian random force fi is characterized by its correlation function

< fi(]c)fj(]c') >---- 2D(2?r)d+lk-YDq(k)5(]_ + k') (79)

This force is white noise in time. Thc exponent y is treated as a variable for purposes

of the subsequent _-cxpansion, in which ¢ = 4 + y - d and d = 3 is the dimension of

space. The analysis leads to a Kolmogorov spectrum when y = 3 or c = 4; this is

therefore the case of physical interest. YO's conclusion is that the nonlinear term the

Navicr-Stokes equation is replaced, in the limit of infinite Reynolds number, by the

combination of random forcing by fi and a scale dependent viscosity v(k), so that

-i_u+(]_) + v(k)k2u+(k) = fi(k) (80)

Mode elimination is used to obtain the recurrence relation

dr(k) _ A D
dk v2k 5 (81)

where the constant A is computed from the theory.

Whereas it is generally agreed that Eq. (78) provides a plausible model of isotropic

turbulence provided the random force f is concentrated at large scales and therefore

provides an energy source, the introduction of a force acting on all inertial range

scales appears to lack fundamental justification. YO's model Eqs. (79) and (80) can

bc compared to the DIA Langcvin model (Kraichnan, 1976)

+ v(k)u+(k)= f+(k) (82)

where the damping function and force correlation are expressed in terms of the DIA

response and correlation functions G and Q by

r/(]¢) = 2iMrm,(k) fk=_+odf_dO Dmr(p)Dns(q)G(f_)Q(O) (83)

f

= .]_. d_d_ Dm,.(p)D,_(q)Q(f_)Q(O)F(_:) < f,(_:)f_(_:') >/5(k+k') =-4M, m_(k)Mjr_(k) -.+:_+0

(8,1)
Eq. (82) is a generic model in statistical mechanics which replaces the effects of an

infinity of nonlinear interactions on any one mode by a random force acting against

a generalized damping; DIA applies this description to a problem which is far from

thermal equlibrium. The "fixed point" RG model Eqs. (79) and (80) formally rcscm-
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blesthe DIA Langevin equationmodel. But the damping u(k)k 2 in in the RG model

Eq. (79) is Markovian, so that

.(i) =,(k) (85)

only and the forcing in Eq. (80) is white noise in time, so that

F(_:) = F(k) (86)

only. Neither of these conditions holds for the DIA Langevin model.

To investigate the connection between these models, write following Kraichnan

Q([_) = Q(p)R(_) (87)

where R is the time correlation function. Perform the frequency integration in Eq.

(84) and evaluate the result in the long time limit in which f_ = 0. This limit

corresponds to observing the system over times long compared to any characteristic
correlation time of the true DIA random force. The result is

F(]¢) = -4M_m,_(k)Mjrs(k) fk dpdq Dmr(p)Dns(q)Q(p)Q(q)O(k,p,q) (88)
=p+q

where

O(k,p,q) = dwR(_)R(O) in=0 (89)
oo

In this limit, the random force is white in time. Further, in Kolmogorov scaling,

Q(Ap) = A-al/aQ(p) (90)

O(Ak, Ap, Aq) = A- 2/30( k, p, q) (91)

consequently, the scaling dimension of the random force is found to be -3:

F(Ak) = A-ak (92)

Formally, in the long time limit, the random force in the DIA Langcvin model has

the same space-time correlation as the force postulated at the outset by YO.

It should bc noted that the power counting which leads to Eq. (92) is purely

formal, since the actual force correlation integral in Eq. (84), like the integral of Eq.

(83), is infrared divergent when evaluated for an infinite Kolmogorov inertial range.

Wc recall that these divergences actually cancel in the DIA energy equation; however,

the assumption of a -3 force in DIA requires a priori infrared regularization.

That the -3 force is natural in the context of any steady state far from equilibrium

with a constant flux of some invisicid invariant is also suggested by the derivation

(Rubinstcin, 1994a) of Bolgiano scaling inertial range for buoyant turbulence by ap-

plying the YO formalism with forcing of the temperature equation only. From this

point of view, the introduction by Lain (1992) of a distinguished infrared scale in the

RG force is debatable: it corresponds to a loss of the locality of the inertial range

postulated by Kolmogorov.
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6.3 The c-expansion and the distant interaction approxima-

tion

The c-expansion is the subject of an especially large number of re-evaluations and re-

considerations, among which are Ronis (1987), Lam (1992) and Wang and Wu (1993).

In YO's original presentation, the e-expansion is an expansion about a logarithmically

divergent theory. An interesting alternative was suggested by Carati (1990a), who

suggested expanding about a theory with vanishing energy transfer (Fournier and

Frisch, 1978). Here, this expansion will be considered, following Woodruff (1992), as

an approximation in DIA.

To complete the transition from the DIA Langevin model to the YO theory, further

approximations are required. They are

• (a) evaluate the DIA integrals in the distant interaction limit in which k/p, k/q --_
0

• (b) Markovianizc the damping

• (c) introduce an infrared cutoff so that the integrals in Eqs. (83),(84) arc

restricted to p > k and q > k only

• (d) evaluate the amplitudes using the c-expansion

It has been emphasized by Woodruff that these approximations are closely related.

First, as noted by Kralchnan (1987), the e-expansion is an expansion about a theory

in which distant interactions are dominant; accepting this point provisionally, wc

outline how the distant interaction limit brings about the Markovianization of the

damping and forcing.

Let the real function H(_), 0 _< _ < cc satisfy

_0 °°
H(0)=I, H(() < lfor_>0, H(_)d_ < co (93)

Then standard properties of delta functions imply

AH(A(t-s)) _ 6(t - s) for A --* co (94)

Rewrite Eq. (83) in the time domain, and evaluate the wavevector integrals in the

distant interaction approximation in which k --* 0, p, q _ co. Then

_(k,t,s) = L dpdq B(k, p, q)G(p, t, s)Q(q, t, s)
=p+q

f dp {kmOB(k,p,p)G(p,t,s)Q(p,t,s)
Oqm
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dQ
-B(k, p, p)G(p, t, s)kmpmp-l-_p (p, t, s) }

where B(k, p, q) denotes the product of projection operators in Eq. (83). Assuming

time stationary similarity forms

G(p,t,s) = G(pr(t- s))

Q(p,t,s) = R(pr(t- s))Q(p)

the properties Eqs. (93) of H may reasonably be postulated of the product GR.

Therefore, Eq. (94) implies that in this limit the damping is Markovian

q(k,t,s) = 6(t- s)_/(k)

and the DIA response equation implies that the Green's function is exponential,

G(k,t,s) = exp [(s - t)r/(k)] for t _> s (95)

Likewise evaluating the force correlation Eq. (84) in the distant interaction limit

implies that the forcing is white noise in time:

< fi(k,t)fj(k',s) > = 5(t - s)5(k + k')F_a(k) (96)

Computing the two-time correlation function from the relation

Qij(k, t, s)5(k + k')

= dr1G(k,t, rl) dr2 G(k',t, r2)x < fi(k, rl)fj(k',r2) >

using Eqs. (95), (96) shows that the fluctuation dissipation relation

Q(k, t, s) -- Q( k)[G(k, t, s) + G(k, s, t)] (97)

expressing the time dependence of the correlation functions in terms of the response
function is also valid in this limit.

These simplifications of DIA permit analytical evaluation of the inertial range con-

stants. Although values of these constants could be inferred from numerical solutions

of DIA, say for decaying turbulence, it is natural to attempt analytical evaluation as
well.

Introducing Eqs. (95) and (96) with the Kolmogorov scaling forms

E(p) = CKs2/ak -s/a (98)

rl(p) = CDgl/ap 2/3

into the DIA response equation integrated over all time separations,

C_) f p-ll/3

C_K -- Jk=p+q dpdq 2iMr.._(k)Dm,.(p)Dn,(q) (p2/a + q2/a)k2/a
(99)
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Integrating the single time equation for the correlation function with respect to

wavcnumber k leads to a second equation, which for Kolmogorov scaling gives

CD

: .1904 (100)

This method of evaluating the inertial range constants CD and C K fails because of

the well-known divergence of Eq. (99) at low wavenumbers. The simplest infrared

regularization which is consistent with Kolmogorov scaling is to restrict the region

of integration to triads satisfying p > c_k. Values of Co(a) and CK(O_) have been

tabulated by Leslie (1972).

The c-expansion can be considered as a method of infrared regularization by an-

alytic continuation. Namely, continue to assume Eq. (97), but replace Eq. (98) by

the general form

E(p) = CKD2/3k 1-2_/3 (101)

The scale independence of the integrated response equation demands

_](p) = CDD1/3 k2-e/3 (102)

The units of D, consistent with Eq. (79), make these equations dimensionally correct.

Substituting these scalings in the integrated response equation gives the c-dependent

form of Eq. (99),

C 2 [ p- 1-2_/3

CK -- Jk=p+q dpdq 2iMr,_n(k)Dmr(p)D,_8(q) (p2-_/3 + q2-_/3)k2-_/3
(103)

The integral in Eq. (103) is ultraviolet divergent when e < 0 and is logarithmic when

e = 0. Woodruff observes that it is reasonable to evaluate Eq. (103) for e > 0 by

asymptotic expansion about e = 0. This expansion greatly simplifies the integration

since the ultraviolet divergence for c < 0 implies that the integral is dominated by

distant interactions, namely by wavcvector triangles such that p, q ---* co. In this

limit, a simple arlalytical evaluation of the integrals is possible. The calculation gives

C_ _ 1A(c) - A-1
CK _

- -- + Ao + Ale + ... (104)

where
3

A--1 ---- --
5

The constant A-1 is distinguished since it is the only one in the series Eq. (104) which

has been evaluated exactly in two senses. First, increasing the number of "loops,"

that is, considering terms in the pcrturbative solution of the Navier-Stokcs equations

with a larger number of force correlations, will correct Ap only for p > 0. It can also

bc shown (Rubinstein, 1994b) that even at the one loop level, correcting the distant
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interaction approximation by power series expansions in k/p also only corrects A v for

p >_ 0. Accordingly, it is reasonable to evaluate Eq. (104) by taking the leading term

only. Setting _ = 4,

cg a
CK 2O

which is easily shown to be equivalent to YO's calculation.

It is sometimes claimed that YO evaluate the inertial range constants by setting

e to four and zero at different places in the same equation. Therefore, it must be

emphasized that in this calculation, e is never set to any value but 3. The analytical

procedure which leads to Eq. (104) is cntircly routine: it is thc evaluation of the

leading term in an asymptotic expansion, not a novel procedure unique to YO.

The e-expansion was described earlicr as an infrarcd rcgularization necessary to

evaluate the right side of Eq. (99), which diverges when p _ 0. Triads with p _ 0, q _--

k correspond to sweeping of modes with wavevector I k 1= k by modes of much larger

scalc. The dynamic significance of this divergence has been elucidated by Kraichnan

(1982). This divergcnce is removed in YO, and indeed in all rcnormalization group

approaches by focusing exclusivcly on interactions for which p, q _> k.

In fact, the e cxpansion is constructed so that when c = 0, the dominant inter-

actions actually are the distant interactions for which p, q --, co: in this casc, the

intcgral in Eq. (99) is logarithmically divergent in this limit. Howcvcr, as Woodruff

(1993) notes, the intcgral becomes infrared divergent when e = 3, and the analytic

continuation from e = 0 to c = 4 in the YO thcory becomes problematic. Thus, al-

though it is satisfying to bc able to compute the incrtial range constants, and even to

obtain satisfactory values by a straightforward computation, thc fact remains that thc

analytic continuation which underlies the calculation requires justification. Moreover,

Woodruff also suggests that one might attempt an c expansion about this infrared

divcrgencc. Not unexpectedly, the results are quantitatively unsatisfactory, but this

possibility suggests that the cxpansion about e = 0 is not the only one possiblc.

Another objection to this procedure can be raised in connection with Eq. (100):

the constant has been obtained by exact evaluation of the triangle integrals making

neither the c-expansion nor the distant interaction approximation. However, the

integral can be shown to be ultraviolet divergent for e < 4 and logarithmic exactly

whcn e = 4. Thus, there is no possibility of an e expansion for this integral, which

must be evaluated exactly.
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7 Appendix: Brief Description of RG Publications

Relevant to YO

7.1 The work of Kraichnan

Kraichnan (1987) provides an extensive discussion on YO. First, he pointed out the

logical distinction between two procedures: the multiple scale elimination and the

C-expansion. First, the evaluation of eddy viscosity by perturbative elimination of

successive small spherical shells of high-wavenumber modes can be carried out by

specifying an actual energy spectrum (Rose, 1977) rather than introducing a forcing

spectrum. Kraichnan discussed next the method of "e-expansion". In this procedure,

the properties of a E(k) _ k 1-2_/3 spectrum range are examined through an expansion,

in powers of _, about the properties of a spectrum E(k) ,_ k.

Kraichnan's analysis is based on estimation of the qualitative nature of eddy

damping in a spectrum of the form

E(k) _ ks (ko< k < kd).

The corresponding eddy damping is given by RG as

v(klp ) (x (p/k) -_/3 (0 < c < 4),

(lO5)

(106)

where s = 1 - c. For the Kolmogorov inertial range spectrum, c = 4, the eddy

damping is local for any positive e since v(klp ) ---* 0 as p ---* c_. In YO, the explicit

calculation of eddy damping is first made in the near neighborhood of this reference

spectrum. Now distant interactions really are weakly dominant for E(k) ,_ k. At

s = 1 or e = 0, Eq. (106) is rcplaced by

u(klp ) c< In(kelp). (107)

The results arc then mapped to the Kolmogorov spectrum by taking c ---* 4. In

the meantime, YO retained terms through first order in c, whereas 4 is not a small

number. Hence, the convergence properties of the expansion arc unclear.

Kraichnan (1987) also stressed that this type of estimation can bc done completely

by dimensional analysis (Fourier and Frisch, 1978; 1983; Kraichnan, 1982). The only

clement of the Navicr-Stokcs equation involved in these discussions arc the overall

energy conservation by nonlinear terms and the coefficients of interaction of distant

wave vector triads.

7.2 The work of Teodorovich and Wang &: Wu

Tcodorovich (1987, 93, 94) used the field-theoretical method to re-evaluate the results

of YO. Wc will discuss two issues discussed in his most recent publication in 1994.

38



The first issueinvestigatedby Tcodorovichis a reassessmentof the eddy viscosity
calculation of YO. This is exactly the samesubject examinedin Wang& Wu (1993).
Recallthat in YO the parameter _ is used asan small pertuterbation expansionand
is an important parameter in YO's eddy viscosity expression. YO then took the
limit c ---*0 when they compute the coefficient but set e = 4 in the powcrlaw expo-
nent. However,both Tcodorovichand Wang & Wu (among many others workers)
noted that there is no mathematical justification for doing this, and the choiceof
c = 4 leadsto unacceptableresults. Furthermore, they found an algebraicerror in
YO. Specifically,in the integration overwavevcctorq, YO introduced a substitution
q _ k + q/2. However,YO did not take this substitution into accountin the cor-
respondingtransformation in the associateddomain of integration. Correcting this

algebraic error, they found an eddy viscosity which is independent of the parameter

c. Hence, the eddy viscosity in Tcodorovich and Wang & Wu is independent of c,

but has the numerical value of the eddy viscosity as YO who took the ¢ _ 0 limit.

Without e dependence in the eddy viscosity, Teodorovich and Wang & Wu propose

that a good agrecmcnt with experimental data can be obtained.

It is important to note the limit e _ 0 in YO was not only used to obtain an

acceptable value for the eddy viscosity, but the limit _ _ 0 also plays an important role

in eliminating higher order nonlinearities in the RG procedure. However, Tcodorovich

and Wang & Wu do not address the closure problem if _ = 4 is maintained throughout

the analysis.

The discussion now leads naturally to the question on how the local and nonlocal

interactions arc being treated by YO a second major issue in the work of Teodor-

ovich. For a forcing correlation which is a function of e, an energy spectrum can be

deduced with an e dependence. As discussed already, Kraichnan (1987) found that
the interactions are local when c _ 0 but nonlocal when _ = 4. Hence the results

computed at one limit may not bc used at another limit. Teodorovich claims that

---* 0 corresponds to the dominance of local interaction. An analytic continuation

in _ from a pole-type singularity at e = 0 to the point e = 4 means neglecting the

nonlocal interactions with the large-scale modes (Teodorovich, 1994). His analysis is

not transparent.

7.3 The work by Ronis

Ronis (1987) analyzed a model for randomly stirred fluids using RG on a path-integral

representation of the Navicr-Stokcs equation. Unlike YO, hc found that a choice of

the random force correlation exponent (y = -1.5851 in three dimensions) is needed

to give the Kolmogorov 5/3 law at high wavcnumbcr.

Of particular interest, Yuan and Ronis (1992) discussed the issue on the generation

of random force. They noted that YO and Ronis (1987) ignored the actual generation

of the turbulence, e.g., at the boundaries of the system, and the precise nature of the

stirring force is not clear. In particular, they found that there was no a priori theory
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for the exponentsused to characterize the random-forceautocorrclation function.
First of all, for incompressibleturbulence,

Ou(r, t)

Ot
+ u(r, t). Vu(r,t) - V[p/p] + v0V2u(r, t) -- F(r, t) (108)

where the force F results from the interactions with the boundary and as such is

not stochastic in nature. They took the view that a statistical force arises from the

random force which represents the effective force felt at smaller length scales that

results from turbulent, but deterministic, motion at larger scales as 'transmitted' by

the nonlinear terms in NSE. They introduced a projection operator T' such that

u'(r,t) ----7_u(r,t) (109)

contains only high-wavenumber information. By applying P to Navier-Stokes equa-
tion it follows

Ou'(r, t)

Ot
+ u'(r,t) • Vu'(r, t) -- V[p'/p] + UoV2u'(r, t) = f(r, t) (110)

where

f(r, t) =_ PF(r,t) - T'[u(r, t). Vu(r, t)] + u'(r,t). Vu'(r,t). (111)

Yuan and Ronis (1992) noted that this 'new' force contains information about

boundaries as well as the mode-coupling effects associated with velocity components

on the injection scales. Since PF(r, t) = 0 away from boundaries, they defined the

random stirring force used in RG studies to result from the mode coupling between the

energy containing and the smaller scales. Since the motion on all scales is expected to

bc 'chaotic' including the energy containing scale, Yuan and Ronis (1992) expected

that f(r, t) will have complicated, chaotic time and space dependences. Therefore,

they identified this as the quantity which is actually modeled by a stochastic force in

random stirring models of turbulence.

The autocorrclation of the transverse parts of f(r, t) is assumed with a non-zero

correlation time (colored noise). The major problem with such an assumption is that

the resulting theory would not be invariant under Galilean transformation. Yuan and

Ronis (1992) argued that there is no a priori reason why global Galilean invariance

must hold. Their reason is that the random forces represents the effects of boundaries

and these arc not included in a Galilean transformation. Note that Eq. (110) is the

subgrid NSE after the full fluctuating NSE is divided into the super- and sub- grid

scales. However, the filtering operation is not used in the later development, and in

particular, the path-integral RG works only with the full fluctuation Navier-Stokcs

equation.
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7.4 The work of Carati

The objectiveof Carati (1990a,b)is to modify the e-expansionof YO.
Carati (1990a)first noticed the differencebetweenthe e- RG applications in Ma

and Mazenko(1975)and YO. In YO, the dimensionality d is considered as a fixed.

A stochastic forcing is introduced to replace the initial and boundary conditions in

Navier-Stokes equation. A correlation function of this forcing is assumed to following

a powerlaw with exponent y. YO then defined y = e + d - 4 where c-expansion is

performed for y. Carati (1990a) attempted to modify the YO procedure by introduc-

ing a parametric dimension d = do - 0(e). But, as Carati (1990a) noted, the physical

meaning of do is not clear a prior.

The next effort of Carati (1990b) involved the extension of the white noise of

the forcing correlation function to a colored one (again a colored correlation refers

to a non-zero correlation in time). He argued, as did Yuan and Ronis (1992), that

the correlation time as well as the correlation length can be important duc to the

appearance of macroscopic scale structures in turbulence. It is then possible to relate

the expansion parameter to the stochastic forcing correlation. The result is that the

parameter e is not treated as a small parameter and is fixed in its original physical

value 4. The frequency correlation provides another free parameter through the pow-

crlaw exponent 3'/3 where -1 < 3' < 1. The original YO's c-expansion is replaced by

arguing that the frequency integral is nearly divergent because of the assumed value

of _,. Alternatively, the e-expansion has now been replaced by a 3'-expansion where

3' = 1 - d. This &expansion was interpreted as a scheme in which a large amount of

energy is injected into the system (Carati, 1990b).

Although Carati viewed the colored forcing correlation as a good way to sidestep

the e-expansion, he did not consider that the introduction of the colored noise violates

the Galilean invariance. This important issue was pointed out by Yuan and Ronis

(1992) in their analysis (see previous subsection).

7.5 The work of Liang and Diamond

Liang and Diamond (1993) conducted a careful examination on the applicability of

e-RG to two dimensional (2D) flows. They examined both 2D fluid and 2D Magne-

tohydrodynamieie (MHD) turbulence but our discussion will be limited to the fluid

turbulence part of the paper only.

The most important difference between 2D and 3D turbulence is the direction of

energy transfer. There is a dual-cascade phenomena, in which the energy is trans-

fered from large to small scales, while enstrophy (defined as mean-square vorticity),

is transferred from large scale to small scales (Kraichnan and Montgomery, 1980).

Liang and Diamond (1993) found that when a proper inertial range energy spectrum

is assumed, no fixed point can be found for positive or negative eddy viscosity. There-
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fore, c-RGcan not be usedto analyzethe physicsof 2d turbulence. They found that
the reasonof this difficulty canbe traced to the dual energycascade.

One important point should be stressed. Although Liang and Diamond (1993)
followed most of the procedure of YO e-RG, they did not apply the e-expansion.
Instead, they usedthe proper inertial rangescalingasan input.

To identify the reasonbehindthe failure of e-RGin 2D, Liangand Diamond (1993)
compared it to the EDQNM closure. In e-RG procedure,all calculations are one
point and only eddy damping term appear. The nonlinearnoise(nonlinearcoupling)
is replacedby adding stochasticforces. The major problem is that the properties of
the stochasticforcescannot be determinedrccursively. They aredeterminedinstead
by the propertiesof the self-similarity range spectra,which in reality, arc the goals
of the calculation. On the other hand, a two-point closurecalculationdeterminesthe
form of the spectrum. Therefore,both the eddy damping and the nonlinear model
coupling tcrms will now appear. Furthermore, while the e-RGonly incorporate the
nonlocal effectsof the small scaleson large scales,EDQNM (and DIA) take both
effectsinto account,in principle.

7.6 The work of Lam

Lam's approach (Lam 1992), although belonging to the FNS school of activity, is

quite different from the other members of that group. It does not make use of the

3,-expansion procedure used by FNS, nor the correspondence principle and the e-

expansion procedure used in the YO theory. His interpretation of e-RG is based on

phenomcnological approach. Zhou (1995) has shown that Lam's model is essentially

the physical space version of the classical closure theory (Leslie and Quarini, 1979)

in spectral space and consider the corresponding treatment of the eddy viscosity and

energy backscattcr.

7.7 The work of Eyink

Eyink (1994) used the momentum-shell RG method of Kadanoff-Wilson based on the

Martin-Siggia-Rosc (1978) field-theory formulation of stochastic dynamics.

One of the major points in Eyink (1994) is that, contrary to the claim of YO,

the higher-order nonlinear terms generated in their RG analysis are not irrelevant

but marginal by power-counting. Because of this, the terms neglected by YO arc

not necessarily small even for small e. The problem was traced to issues relevant to

Galilean-invariant theories. It is shown not to occur in the FNS original analysis since

they wcrc dealing with fluctuation dynamics for equilibrium NS fluids. The issue of

Calilean invariance has also been discussed by Zhou and Vahala (1993b).

Eyink (1994) also prcscntcd his objections to the YO applications of e-RG to tur-

bulence modeling. First, hc repeated Kraichnan's (1987) arguments that the power-

laws derived by YO can bc simply derived from dimensional analysis. Second, hc
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stated, as Zhou et al. (1988), that by setting _ -- 4, there is no reasonto believe
that additional nonlinearities arc negligibleor insignificant to the Physics. Finally,
the YO analysisdoesnot include the rescalingprocedure,which Eyink (1994)viewed
as vital to error estimation. In fact, Eyink (1994)evenstated that "YO thory is not
an RG analysisat all!".

43



Part IV

RG-based turbulence modelling

8 Modeling of Reynolds stress using RG

Turbulent flows of practical interest involve a broad spectrum of length and time

scales and require some type of modeling for Reynolds stresses. The most widely

used are the two-equation turbulence models based on the transport equations for

parameters that involve the length and the time scales and require the simplest level

of Reynolds stress closure that does not depend specifically on the flow geometry.

In its standard form the two-equation Reynolds stress turbulence models involve the

turbulence kinetic energy and dissipation based on a Boussinesq type approximation

involving isotropic eddy viscosity. Such a representation of turhulencc is often not

effective from both theoretical as well as phenomenological point of view. To overcome

this, models that are nonlinear (i.e., quadratic) in the mean strain rate were proposed

in the form of a constitutive relation (Spezialc, 1987; Yoshizawa, 1984). These models

are capable of predicting the anisotropy in the Reynolds stresses in complex flows but

require empirical evaluation of the model constants (Speziale, 1991).

Two studies presented here _ address the need for a more effective approach in the

development of two-equation turbulence models, and in this context the renormaliza-

tion group (RG) theory based models are considered (for a summary of the ICASE

panel discussion on RG based turbulence modeling, scc Zhou and Spcziale (1994)).

These models fall into two distinct categories: (a) e - RG, where a small parameter

e is introduced into the exponent of the forcing correlation function (with the forcing

function being introduced into the momentum equation), and the theory is then de-

veloped for e << 1 (Yakhot and Orszag, 1986); and (b) recursion-RG, which does not

rely on an e-expansion, and treats explicitly the cubic nonlinearities introduced into

the renormalized momentum equation (Zhou, et al. 1988). It should be noted that in

the e - RG while all constants generated are evaluated in the limit e << 1, at the same

time, all exponents that are _-dependent are evaluated at c = 4. In fact, e = 4 is re-

quired in the _- RG to recover the Kolmogorov energy spectrum in the inertial range.

In addition, c - RG theory can only take into account non-local interactions (Smith

and Reynolds, 1992). On the other hand, recursion-RG does not rely on an e-expan-

sion, and treats explicitly the cubic nonlinearities introduced into the rcnormalizcd

momentum equation. Moreover, recursion-RG can handle both local and non-local

interactions. Effects such as the cusp behavior in the transport coefficients (Zhou

5Note that recently Nagano and Itazu (1997) attempted to derived an eddy viscosity model using
the itcractivc averaging method
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and Vahala, 1993a)which are due to local interactions and the cubic nonlinearities
are recoveredin these theories. As in e- RG, the eddy viscosity is readily deter-

mined from the solution of a relatively simple differential equation (Zhou and Vahala,

1993a). However, unlike c - RG, the transport coefficients arc determined over the

whole resolvable scales and not just in the wavenumber limit k --, 0.

The contributions to the Reynolds stress tensor 7-_j from the conventional time-

averaging of the equations of motion are due to the nonlinear coupling term and its

interaction with the velocity field (Zhou et al., 1993). In particular, the Reynolds

strcss tensor, _'ij = _-i++ + 7-_-, where the Ti++ - part arises from the infrared limit

of k _ 0 and is due to the u + - u + distant interaction limit while the _-_+- - part

arises from the 0 < k _< kc spectrum and is due to the u + -u]- local interaction

limit. It should bc noted that in c - RG approach, one takes the large-scale infrared

limit k --_ 0. In essence, this forces a spectral gap between the resolvablc part of thc

flow field and the small unresolved scales. If this spectral gap were somchow present

initially, it would bc quickly populated in just a few eddy turn over times. Thus,

retaining only the distant interactions may not bc appropriate. In fact, it has been

shown (Zhou and Vahala, 1993a) that the energy transfer function that corresponds to

local interactions accounts for most of the energy flow out of the resolvable scales. It

is, therefore, important to retain both local and nonlocal interactions in the modeling

of the Reynolds stress and this can be readily achieved by recursion-RG. But in the

- RG model, the Reynolds stress T_j = _-_+ and is obtained purely from the u + - u_-

interaction in the small unresolved scale momentum equation.

Rubinstcin and Barton (1990) have derived a Reynolds stress model using the

- RG method (which corresponds to the infrared limit of k _ 0) of the following

form:

+C_-2(O_UiOjU, + O,_UjOiU_)* + C,-a(O,U,_OjU,_)*]. (112)

The constants C_1 = 0.034, C_2 = 0.104 and C_a = -0.014, and (...)* denotes

the deviatoric part of the expression within the parenthesis. The first two terms

correspond to the linear model and VT = C, K2/e is the isotropic eddy-viscosity,

where c is the turbulence dissipation and C, _ 0.09 based on empirical data from

equilibrium boundary layer flows. The above model is quadratic in mean strain rate,

includes the effect of convection and diffusion and is qualitatively similar to other

second order models (Speziale, 1991).

Now, if one follows standard recursion-RG procedures (Zhou et al., 1993), the

relevant part of the small scale velocity field that contributes to Ti+- is obtained

in the wavenumber space. Transforming back to the physical space the following

algebraic representation is obtained (Zhou ct al., 1993):

g 4

Ti+- (X) =- CR1-_-[Oo_ViOBUjOotV _ -_- i _ j]
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K 7

+CR2-_[(O_Ui)Oj(O._U#O,_OzU._) + i _ j] (113)

where U_ is the time-averaged mean velocity (and the second term inside the square

brackets is obtained by switching the indices). However, for most flows of interest

(inhomogeneous flows), the cut-off wavenumber kc varies considerably throughout the

flow domain. Thus, if one wishes to use the local approximation, as well as retain

kc "-_ O(1) effects so as to obtain an algebraic form for T_><(X), then the coefficients

CR1 and Cn2 will be functions of the flow quantities. As a first attempt at applying this

rccursion-RG model we make the lowest order approximation that these coefficients

arc constants. In particular, for the present analysis, CR1 and CR2 arc taken to be

0.025 and 0.342 x 10 -3, respectively (Zhou et al., 1994).

Combining (112) - (113) a formal expression for Reynolds stress which includes

both the local and nonlocal interactions may bc obtained. It is of some interest to

note that integrity basis representations are commonly employed to represent the

anisotropic part of the Reynolds stress tensor for three dimensional turbulent flows

based on a systematic derivation from a hierarchy of second-order closure models

(Gatski and Spczialc, 1993). It can readily be shown that the tensors that constitute

thc integrity basis are recovercd for most part whcn the proposed recursion-RG model

is recast appropriately (Zhou ct al., 1994).

The above cxprcssion for Reynolds stress (112) - (113) are to be used along with

the equations of motion by specifying turbulent kinetic energy and dissipation. In

two-equation turbulence models, this closure is achieved through the devclopmcnt of

transport equations for the turbulent kinetic energy and dissipation - quantities that

are directly related to the length and time scales - of the following gcneral form:

cgtK + UjOjK = P - _ + O_[(Vo + VT/aK)O_K] (114)

ats + Ujcgja = CclPa/K - C_2_2/K + ai[(Vo + VT/Ve_)OiC] (115)

where, v = "o + "T is the total viscosity, 7' = --T_3(OUi/Oxj) is the turbulence

production, c is the scalar turbulent dissipation rate. Thc quantities C_l, C_2, aK, a_

are dimensionless and taken to be 1.44, 1.92, 1.0 and 1.3, respectively, consistent with

thc standard form of the two-equation K - E model (based on empirical data obtained

from equilibrium boundary layer flows). We note that with various approximations,

thce - RG-based formulations computed these constants as 1.42, 1.68, 0.719 and

0.719, respectively (Yakhot and Orszag, 1986).

The RG theory is utilized to develop Reynolds stress closure models for the pre-

diction of turbulent separated flows. The combined model includes both the local and

nonlocal intcraction of all the relevant resolvable scales. The ability of the proposed

model to accurately predict separated flows is analyzed from a combined theoretical

and computational standpoint by considering turbulent flow past a backward facing

step as a test case. The results obtained based on detailed computations demonstrate
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that the RG model canyield very good predictions for the turbulent flow of an in-
compressibleviscousfluid overa backward-facingstep (Zhou et al., 1994). Thus, in

spite of its well known deficiencies, when the anisotropy of the turbulent stresses arc

properly accounted for, the two-equation turbulence models can be quite effective for

the prediction of turbulent separated flows.

9 RG based K- c model

YO derived the K-_ two equation model using c-RG method. Spcziale (1990) found

that the original YO model performs poorly in homogeneous shear flow. The value C_1

derived in YO yields excessively large growth rate for the turbulent kinetic energy in

homogeneous shear flow in comparision to both physical and numerical experiments

(Speziale, 1991).

Smith and Reynolds (1992) found some algebraic error in the original derivation

of YO. The coefficients of the dissipation term in c equation is not in good agreement

with generally accepted values. Furthermore, YO's derivation did not yield a term

responsible for the production in the c equation.

The original derivation of YO was revised by Yakhot and Smith (YS) (1992) by

the following features:

1. The 'infrared cutoff' of the random force, < f>f> >= 0 when 0 < k < AL

< f_(k,t)fz(k',t') >= Dok-_D_z(k)(_(k+k')d(t-t'), AL < k < oc = O, 0 < k < AL

(116)

This property is needed in the derivation of the equation for the mean rate of

energy dissipation c (YS).

2. The input of energy spectrum for the interval 0 < k < AL

E(k) ~ k° (117)

is required to evaluate the integrals (with a = 2).

3. Performing a Reynolds decomposition of T1 = -2_'o(Vjui)(Vjut)(Vlui) into

mean U and fluctuating u velocities.

The derivation of YO and YS starts from dynamical equations for the homoge-

neous part of the instantaneous rate of energy dissipation per unit mass e - u0(Vjui) 2
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T2

- 2  (vjv u,) 2 + .0v v, (118)

After some work, at the stirred fluids at the long-time and large-distance limit,

the e-RG dissipation equation (YS, 1992) is found to bc

Dtc = Cel(C/K)TijOjui - Ce2_2/g _- Oi(oLl]TOi_) -- _r_ (119)

where C_1 = 1.42, C_2 = 1.68 and

•Out Out (120)
7_ = 2voS_3 0xi Oxj

The c expansion procedure and above mentioned assumptions have been employed.

The above e-RG dissipation equation is not closed. The neglect of "R is a formally

justified approximation at high Reynolds number if the hypothesis of local isotropy

is invoked. Durbin and Speziale (1991) have questioned the validity of local isotropy

in strongly strained turbulence flows. Yakhot et al. (1992) have proposed a model

where 7_ = 7_(r/), where the standard form of the model is recovered for 7_ --_ 0 in

the limit of weak strains. Note that Durbin (1990) has already developed a model

for the production of dissipation along these lines that was quadratic in the ratio

of production to the dissipation and, hence, quartic in 7]. Lam (1994) published a

critique on the YS derivation.

Iterating the expression for 7-4 using the Navier-Stokes equation will generate a

power series

SK
= VTS'3 E rn(--)n (121)

n=0 C

where S = (2S_jSij) U2. It is not possible to evalutc the summation since the values
of coefficients arc unknown.

The 7_ is modeled via three steps:

1. The summation is performed for the geometric series for every three terms.

This procedurc reduces the numbers of unknown coefficients to one,/3.

no= 3
_=0 e 1 + _rl 3" (122)

2. Assuming that the fixed point value r/0 = 4.38 of the homogeneous shear flow

in the equilibrium states, is invariant to dropping all terms but those in (122) above,

Yakhot et al. (1992) postulated that

/,ST$3

_- 1 + fir] 3(1 - 7]/77°)' (123)

3. One now further assumes that the isotropic Reynolds stress Tij = -2C_K7]i3

(,_j = S,jK/c)
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= _-_ K = 1+ _ K _'_S'_

The undertermined constant /3 = 0.012 for the yon K_rm£n constant 0.4.

final e-RG dissipation rate transport equation is given

(124)

Thc

Dt_ = C:l(¢/K)7-ijOjui - C_2E2/K + Oi(auTOiE)

where the coefficient C71 is given by

(125)

_(1- _/v0)
C'1 =Cd- (126)

1 +/_3

The model of Yakhot ct al. (1992) has bccn tested for homogeneous shear flows

and for flow over a backward facing step. Excellent results are obtained in both cases.

Recently, Yakhot and Orszag have extended the model and applied it to complex flows

using the FLUENT code.

Part V

Conclusion

In this review, we explained the concepts of tcrms renormalization and renormaliza-

tion group by referencing to various physical systems, such as the ising model. Wc

then present a comprehensive review on applications of the method of rcnormaliza-

tion group to turbulence. Thcsc parts should bc sufficient for readers who wishes to

get a balanced view of RG in turbulence. For a few sclccted approaches, wc have

provided further technical details. We conclude with a discussion of the relevance

and application of rcnormalization group to turbulence modelling.

49



Part VI

References.

Carati, D,, 1990a. "Rcnormalization-group theory of turbulence: A d-dimensional c

expansion," Phys. Rev. A 41, 3129

Carati, D,, 1990b. "Colored stochastic noises in the renormalization group approach

of turbulence," Phys. Fluids A, 2, 1854.

Carati, D,, 1991, "Locality hypothesis in the renormalizcd Navicr-Stokcs equation."

Phys. Rev. A 44, 6932.

Chasnov, J. R., "Simulation of the Kolmogorov incrtial range using an improved

subgrid model," Phys. Fluids A, 3, 188, 1991.

Chcn, S., Doolcn, G., Kraichnan, R. H., and She, Z.S., 1993b. "On statistical

correlations between velocity increments and locally averaged dissipation in

homogeneous turbulence," Phys. Fluids A, 5, 458.

Chollet, J.P., and Lesicur, M., 1981. "Parameterization of small scales of three-

dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sc_.,

38, 2747.

Dannevik, W.P., Yakhot, V. and Orszag, S.A., 1987. "Analytical theories of turbu-

lence and the e expansion," Phys. Fluids 30, 2021.

DeDominicis, C. and Martin, P.C., 1979. "Energy spectra of certain randomly-

stirred fluids," Phys. Rev. A 19, 419.

Domaradski, J.A., Mctcalfc, R.W., Rogallo, R.S., Riley, J.J., 1987. "Analysis of

subgrid-scalc eddy viscosity with use of results from direct numerical simula-

tions," Phys. Rev. Lett., 58, 547-550

Durbin, P., 1990. "Turbulence closure modeling near rigid boundaries", Annual

research brief- 1990, Center for Turbulence Research, Stanford Univ.

Durbin, P., and Spczialc, C.G., 1991. "Local anisotropy in strained turbulence at

high Reynolds numbers," ASME J. Fluid Engng., 113, 707.

Eyink, G.L., 1994. "The renormalization group method in statistical hydrodynam-

ics," Phys. Fluids 6, 3063.

Forster, D., Nelson, D.R., and Stephen, M.J., 1976. "Long-time tails and the large-

eddy behavior of a randomly stirred fluid," Phys. Rev. Lett. 36, 867.

5O



Forstcr, D., Nelson,D.R., and Stephen,M.J., 1977. "Large-distanceand long-time
propertiesof a randomly stirred fluids," Phys. Rev. A 16, 732.

Fournier, J.-D., and Frisch, U., 1978. "d-dimensional turbulence," Phys. Rev. A

17, 747.

Fournier, J.-D., and Frisch, U., 1993. "Remarks on the renormalization group in

statistical fluid dynamics," Phys. Rev. A 28, 1000.

Gatski, T.B., and Spcziale, C.G., 1993. "On explicit algebraic stress models for

complex turbulent flows," J. Fluid Mech., 254, 59.

Gcll-Mann, M., and Low, F.E., 1953 "Quantum electrodynamics at small distance,"

Phys. Rev. A 5, 1300

Hu, B., 1982. "Introduction to real-space rcnormalization-group methods in critical

and chaotic phenomena" Phys. Report, 91, 233.

Huang, K., 1963. "Statistical Mechanics," John Wiley.

Kadanoff, L.P., 1977. "Thc application of renormalization group techniques to

quarks and strings," Rev. Mod. Phys., 49, 267.

Kolmogorov, A.N., 1941. "The local structure of turbulence in incompressible vis-

cous fluids for very large Reynolds numbers," C.R. Acad. Sci. URSS, 30, 301.

Kraichnan, R. H., 1959, "The structure of turbulence at very high Reynolds num-

ber," J. Fluid Mech., 3.

Kraichnan, R. H., 1964, "Lagrangian history...," Phys. Fluids

Kraichnan, R.H., 1976. "Eddy viscosity in two and three dimensions," J. Atmos.

Sci., 33, 1521 (1976).

Kraichnan, R.H., 1982. "Hydrodynamic turbulence and the renormalization group,"

Phys. Rev. A, 25, 3281.

Kraichnan, R.H., 1987. "An interpretation of the Yakhot-Orszag turbulence theory"

Phys. Fluids, 30, 2400.

Kraichnan, R.H., and Montgomery, D., 1980. "Two dimensional turbulence", Rep.

Prog. Phys., 43, 1385.

Lam, S.H., 1992. "On the RNG theory of turbulence," Phys. Fluids A, 4, 1007.

Lam, S.H., 1994. "On RNG theory and the decay law of homogeneous isotropic

turbulence", in Transition, turbulence, and combustion, Volume II, edited by

M.Y. Hussaini ctal. (Kluwer , Dordrccht, 1994)].

51



Liang, W.Z., and Diamond, P.H., 1993. "A renormalization group analysisof two-
dimensionalmagnetohydrodynamicturbulence," Phys. Fluids B, 5, 63.

Lesieur, M., Turbulence in Fluids, (Kluwer, Dordrecht, 1990)

Lesicur, M., and Metails, O., 1996, "New trends in large-eddy simulations of turbu-

lence," Ann. Rev. Fluid Mech.. 28

Lcsicur, M., and Rogallo, R.S., "Large-eddy simulation of passive scalar diffusion in

isotropic turbulence," Phys. Fluids A, 1, 718 (1989).

Leslie, D.C., Developments in the theory of turbulence (Clarendon, Oxford, 1972)

Leslie, D.C., and Quarini, G.L., 1979. "The application of turbulence theory to the

formulation of subgrid modelling procedure," J. Fluid Mech., 91, 65 (1979)

Ma, S.-K., and Mazcnko, G.F., 1975. "Critical dynamics of fcrromagncts in 6 -

dimensions: General discussion and detailed calculation," Phys. Rev. B, 11,

4077.

Magill, F.N., cd., The Nobel Prize Winners: Physics, Vol 3. (Salem Press, Pasadena,

CA 1989)

Martin, P.C., Siggia, E.D., and Rose, H.A., 1978. "Statistical dynamics of classical

system," Phys. Rev. A 8, 423.

McComb, W.D., 1982. "Reformulation of the statistical equations for turbulent

shear flow," Phys. Rev. A 26, 1078.

McComb, W.D., and Shanmugasundaram, V., 1983. "Fluid turbulence and the

rcnormalization group: a preliminary calculation of the eddy viscosity," Phys.

Rev. A 28, 2588.

McComb, W. D., 1986. "Application of renormalization group (RG) methods to the

subgrid modeling problems," in Direct and large eddy simulation of turbulence

(cds U. Schumann and R. Friedrich.) Notes on numerical fluid mechanics, Vol.

15. Vieweg, Braunschweig.

McComb, W. D., 1990. The Physics of Fluid Turbulence, Oxford University Press.

McComb, W. D. and Watt, A. G., 1990. "Conditional averaging procedure for the

elimination of the small-scale modes from incompressible fluid turbulence at

high Reynolds numbers," Phys. Rev. Lett. 65, 3281.

McComb, W. D., Roberts, W. and Watt, A. G., 1992. "Conditional averaging

procedure for problems with mode-mode coupling," Phys. Rev. A 45, 3507.

52



McComb, W. D. and Watt, A. G., 1992. "Two-field theory of incompressible fluid

turbulcncc," Phys. Rev. A 46, 4797.

Moin, P., 1997. "Progress in large-eddy simulation of turbulent flows" AIAA 97-

0749.

Nagano, Y., and Itazu, Y., 1997. "Renormalization group theory for turbulcncc:

eddy viscosity type model based on an interactive averaging method," Phys.

Fluids 9, 143

Nelkin, M., 1974. "Turbulence, critical fluctuations, and intcrmittcncy" Phys. Rev.

A 9, 388.

Orszag, S. A., 1977. 'Statistical theory of turbulence," in Fluid Dynamics 1973, Lcs

Houches Summer School of theoretical physics, Gordon and Brcachi, 237.

Reynolds, W.C., 1990. "The potential and limitations of direct and large-eddy

simulations," in Whither Turbulence, edited by J. Lumlcy, p.313, (Springer,

Berlin, 1990)

Rogallo, R.S., and Moin, P., 1984. "Numerical simulations of turbulent flows," Ann.

Rev. Fluid Mech.. 16, 99.

Ronis, D., 1987, "Field-theoretic rcnormalization group and turbulence," Phys. Rev.

A 36, 3322.

Rose, H.A., 1977. "Eddy diffusivity, eddy noise and subgrid scale modeling," ,/.

Fluid Mech. 81, 719.

Rose, H.A., and Sulcm, P.L., 1978. "Fully developed turbulence and statistical

mechanics," J. Phys. (Paris), 39, 441

Rubinstcin, R., 1994a. "Rcnormalization group theory of Bolgiano scaling in Boussi-

nesq turbulence," NASA Technical Memorandum 106602.

Rubinstein, R., 1994b. "The Yakhot-Orszag theory and local interactions," in Tran-

sition, Turbulence, and Combustion, M. Y. Hussaini, T. B. Gatski, and T. L.

Jackson (eds), vol. 2, p. 163 (Kluwer).

Rubinstein, R., and Barton, J.M., 1990. "Nonlinear Rcynolds stress models and the

renormalization group," Phys. Fluids A, 2, 1472.

Smagorinsky, J., 1963. "General circulation experiments with the primitive equa-

tions," Monthly Weather Rev., 91, 99.

Smith, L.M. and Reynolds, W.C., 1992. "On the Yakhot-Orszag rcnormalization

group method for deriving turbulence statistics and models," Phys. Fluids A,

4, 364.

53



Speziale,C.G., 1985,"Galilean invarianceof subgrid-scalestressmodelsin the large-
eddy simulation of turbulence," J. Fluid Mech. 156, 55.

Spcziale, C.G., 1987, "On nonlinear K - 1 and K - ( models of turbulence", J. Fluid

Mech. 178, 459.

Speziale, C.G., 1991. "Analytical methods for the development of Reynolds stress

closures in turbulence," Ann. Rev. Fluid Mech., 23, 107.

Stucckclbcrg, E.C.G. and Petermann, 1953. "La normalisation des constantes dans

la theories des quanta," Helv. Phys. Acta, 26, 499.

Teodorovich, E.V., 1987. "Calculation of turbulent viscosity," Izv. Akad. Nauk

SSSR, Ser. Mekh. Zhid. Gaza, 4, 29.

Tcodorovich, E.V., 1993. "Rcnormalization description of turbulence," Izvestiya,

Atmosperic and ocean physics, 29, 135.

Teodorovich, E.V., 1994. "On the Yakhot-Orszag theory of turbulence" Fluid Dy-

namics, 29, 770.

Wang, L.P., Chcn, S., Brasscur, J.G., and Wyngaard, J.C., 1996. "Examination of

hypotheses in thc Kolmogorov refined turbulence theory through high-resolution

simulations: Part 1. Velocity field," J. Fluid Mech. 309, 113.

Wang, X.-H., and Wu, F., 1993. "One modification to the Yakhot-Orszag calculation

in thc rcnormalization-group theory of turbulence," Phys. Rev. E, 48, R37.

Watt, A.G., 1991. "A study of isotropic turbulence," Ph.D. thesis, University of

Edinburgh.

Wilson, K.G. and Kogut, J., 1974. "The rcnormalization group and the _ expansion,"

Phys. Rep, 12C, 75.

Wilson, K.G., 1975. "The rcnormalization group: critical phenomena and the Kondo

problem," Rev. Mod. Phys., 47, 773

Woodruff, S.L., 1992. "Dyson equation analysis of inertial-range turbulence," Phys.

Fluids A, 5, 1077

Woodruff, S.L., 1993. "A similarity solution for the direct interaction approxima-

tion and its relationship to renormalization-group analysis of turbulence" Phys.

Fluids, 6, 3051.

Yakhot, V., 1991 Personal communication to W.D.McComb.

54



Yakhot, V., Presentationat ICASE panel discussionon RNG methods in turbu-
lencemodeling, June 29, 1993. [SeeZhou and Spcziale,An overviewof RNG
methods in turbulence modeling: Panel discussionsummary, in Transition,

turbulence, and combustion, Volume II, page 179-196, edited by M.Y. Hussaini

et al. (Kluwer , Dordrecht, 1994)].

Yakhot, V. and Orszag, S.A., 1986. "Rcnormalization group analysis of turbulcncc

theory. I. Basic theory," J. Sci. Comput. 1, 3.

Yakhot, V. and Smith, L.M., 1992. "The renormalization group, the e expansion,

and derivation of turbulcncc models," J. Sci. Comput. 7, 35.

Yakhot, V.,Orszag, S.A.,Thangam, S., Gatski, T.B., and Spcziale, C.G., 1992. "Dc-

velopment of turbulence models for shear flows by a double expansion tech-

nique," Phys. Fluids A, 4, 1510.

Yeung, P.K., and Zhou, Y., 1997. On the universality of the Kolmogorov constant in

numerical simulations of turbulence", Phys. Rev. E, Submitted for publication.

Yoshizawa, A., 1984, "Statistical analysis of the deviation of the Reynolds strcss

from its eddy viscosity representation," Phys. Fluids, 27, 1377.

Yuan, J.-Y., and Ronis, D., 1992, "Theory of fully developed hydrodynamic turbu-

lent flows: Applications of rcnormalization-group mcthods," Phys. Rev. A, 45,
5578.

Zhou, Y., "Eddy damping, backscattcr, and subgrid stresses in subgrid modeling of

turbulence," Phys. Rev. A, 43, 7049 (1991)

Zhou, Y., 1993a. "Degrees of locality of cncrgy transfer in the inertial rangc," Phys.

Fluids A, 5, 1092.

Zhou, Y., 1993b "Interacting scales and energy transfer in isotropic turbulence,"

Physics Fluids A, 5, 2511.

Zhou, Y., 1995. "Classical closure theory and Lam's interpretation of e-RNG" Phys.

Rcv. E, 51,374.

Zhou, Y., and Spezialc, C.G., "An overview of RNG methods in turbulence modeling:

Panel discussion summary", in Transition, turbulence, and combustion, Volume

II, page 179-196, edited by M.Y. Hussaini et al. (Kluwer , Dordrecht, 1994)].

Zhou, Y., and Vahala, G., 1992. "Local intcractions in rcnormalization methods for

Navicr-Stokes turbulence," Phys. Rev. A, 46, 1136.

Zhou, Y., and Vahala, G., 1993a. "Reformulation of recursivc rcnormalization group

based subgrid modeling of turbulence," Phys. Rev. E, 47, 2503.

55



Zhou, Y., and Vahala, G., 1993b. "Renormalization group estimates of transport

coefficients in the advection of a passive scalar by incompressible turbulence."

Physical Review E, 48, 4387

Zhou, Y., Vahala, G., and Hossain, M., 1988. "Rcnormalization group theory for

the eddy viscosity in subgrid modeling," Phys. Rev. A, 37, 2590.

Zhou, Y., Vahala, G., and Hossain, M., 1989. "Renormalized eddy viscosity and

Komogorov's constant in forced Navier-Stokes turbulence," Phys. Rev. A, 40,

5865.

Zhou, Y., Vahala, G., and Thangam, S., 1994. "Development of a rccursivc RNG

based turbulence model," Physical Review E, 49, 5195.

Zhou, Y., Ycung, P.K., and Brasscur, J.G., 1995. "Scale disparity and spectral

transfer in anisotropic numerical turbulence," Physical Review E, 53, 1261

Zhou, Y., Vahala, G., McComb, W.D., and Lam, S.H., "RNG for CFD? An assess-

ment of current RNG theorics of turbulence"

in "Transition, Turbulence, and Combustion", cditcd by M.Y. Hussaini ct al.

(Kluwer, 1994)

56





Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

Publicreporting burden for thiscollectionof information isestimated to average1 hour perresponse,including the time for reviewing instructions, searchingexisting data sources.
gathering and maintaining the data needed, andcompletingand reviewingthe collectionof information Send commentsregardingthis burden estimate orany other aspectof this
collectmnof information, including suggest.tonsfor reducing this burden,to Washington HeadquartersServices,Directoratefor Information Operations and_eports, ] 215 Jefferson
[)avistttghway, State 1204, Arlington, VA 222024_02. and to the Office of Managementand Budget, PaperworkhteductionProJect (0704 01_8), Washington, D( 2050_,

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Augusi 1997 (_ont ]actor t/eporl

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

l_enorntalization (;roup (R(;) in Turlmh, nce: ttistorical and (:ompar-
alive t)erspectiw ,

6. AUTHOR(S)

Y(' Zhou
\\". David M('('omb

(;eor_e Vahala
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for ('omputer Applications ill ,":,cience and t']np, hteerhiR

Mail Stop ,IO:L N:\S:\ Lallgley tieseaz'ch ('clllct

I [allll)t,on. VA 22{(J8 1-000 I

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National .,\('FOllallti('_ aZitl Space Administration

[.allg[(, 3' I{t,_.,alth ('('liI_.'l"

[]allll_ton, VA 2:11i_I-0()01

(' NA,q,I_ 19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

l(b\._l'] Report No. 97-3(i

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NA. A (71{-20171_,

I('ASE t{eporI No..OT-:16

II. SUPPLEMENTARY NOTES

l_a._h'y Technical Monitor: Dennis M. thl,,,hnell
Final }_(,porl

Submitted to I'heoreli('al and ('Omlmtalional l"luid Dymtmi(s

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Iil,('la_ilit'd 1;nlimilt.d

%ubjecl (:ategory 3.1

12b. DISTRIBUTION CODE

13. ABSTRACT (l%$a*imum 200 wo,ds)

The l(,rms ]'vnor,ualizalion and renolmalizatio|! group are explained by refi.,'en('(, 1o various physical systimls. '['h('

t,xlt.nsion ol renormalizalion gl'OU I) to lurbuhmcc is Ih('n discussed; first as a co]nl)r('heltsive review and second

('on('('ni vat i]Ig Oil the' lo('hliica.I details of a few selected ;tl:,pl'oach('s. "_Vl:'(ol|(:hld(, with a discussion of lh(, r(,l(!vall('(,

and al>plk'ation of u'enorunalixation _roup Io turlmhm('v modt'llhi_.

14. SUBJECT TERMS

|'eno|'nlalizalion group, spectral eddy-vis<'o,-ity, Reynolds average modeling

17. SECURITY CLASSIFICATION

OF REPORT

[' nclassilied

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION i 19. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT

[ _. classitied

15. NUMBER OF PAGES

60

16. PRICE CODE

A04

20. LIMITATION

OF ABSTRACT

Standard Focm 298(Rev. 2-89)
Prescribed byANSI Std / _,qI_
?qH 102


